FINAL MONITORING REPORT (MY1)

WARREN WILSON COLLEGE STREAM MITIGATION SITE

Buncombe County, North Carolina

NCDMS Project ID No. 100019 Full Delivery Contract No. 7188 USACE Action ID No. SAW-2017-01557 NCDWR No. 20171158 RFP No. 16-006991 (Issued: 9/16/16)

> French Broad River Basin Cataloging Unit 06010105

Data Collection: January - November 2020 Submission: January 2021

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Mitigation Project Name	Warren Wilson College	USACE Action ID	2017-01557
DMS ID	100019	DWR Permit	2017-1158
River Basin	French Broad	Date Project Instituted	5/22/2017
Cataloging Unit	06010105	Stream/Wet. Service	French Broad 06010105
County	Buncombe	Date Printed	10/1/2020
		Digitally signed by BROWNING.KIMBERLY.DA	NIELLE.1527683510

BROWNING.KIMBERLY.DANIELLE.1527683510 Date: 2020.10.05 11:02:35 -04'00'

Signature of Official Approving Credit Release

1 - For NCDMS, no credits are released during the first milestone

2 - For NCDMS projects, the initial credit release milestone occurs when the as-built report (baseline monitoring report) has been approved by the NCIRT and posted to the NCDMS Portal, provided the following criteria have been met:

1) Approved of Final Mitigation Plan

2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property.

3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan.

4) Receipt of necessary DA permit authorization or written DA approval for projects where DA permit issuance is not required.

3 - A 10% reserve of credits is to be held back until the bankfull event performance standard has been met.

Credit Release Milestone	Cold Stream Credits							
Project Credits	Scheduled Releases %	Estimated Scheduled Release #	Proposed Released #	Not Approved # Releases	Approved Credits	Anticipated Release Year	Actual Release Date	
1 - Site Establishment	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
2 - Year 0 / As-Built	30.00%	3,015.280	3,015.280	0.000	3,015.280	2019	10/1/2020	
3 - Year 1 Monitoring	10.00%	1,005.093				2020		
4 - Year 2 Monitoring	10.00%	1,005.093				2021		
5 - Year 3 Monitoring	10.00%	1,005.093				2022		
6 - Year 4 Monitoring	5.00%	502.547				2023		
7 - Year 5 Monitoring	10.00%	1,005.093				2024		
8 - Year 6 Monitoring	5.00%	502.547				2025		
9 - Year 7 Monitoring	10.00%	1,005.093				2026		
Stream Bankfull Standard	10.00%	1,005.093				2022		
	-	-	Totals		3,015.280			

Total Gross Credits	10,050.933
Total Unrealized Credits to Date	0.000
Total Released Credits to Date	3,015.280
Total Percentage Released	30.00%
Remaining Unreleased Credits	7,035.653

Notes

Contingencies (if any)

Project Quantities

Mitigation Type	Restoration Type	Physical Quantity
Cold Stream	Restoration	9,220.000
Cold Stream	Enhancement I	62.000
Cold Stream	Enhancement II	1,974.000

NCDMS Comment Responses:

• Report Cover Pages (2): Please also provide the date of issuance with the RFP#: RFP# 16-006991 (Issued: 9/16/16).

The RFP date of issuance was added to the cover pages.

- **General:** Please include RS's comment responses to the IRT's MYO/ As-Built Baseline Monitoring Report comments issued via email on 10/5/20. The IRT comments and RS comment responses should be included in the final MY1 report appendices. RS's responses to the IRT's MYO comments have been included as Appendix G.
- Site Permitting/Monitoring Activity and Reporting History Table & Table 2: Please remove the RFP Issuance date and RFP Opening date rows from the tables. The RFP # and issuance date are included on the report covers. The RFP opening date is not applicable. The RFP Issuance and opening date entries were removed from table 2.
- Section 1.1 Project Goals and Objectives: #6 31.2 x 1011 colonies [col] should be updated to 31.2 x 10¹¹ colonies [col]. This number was updated.
- Section 1.2 Project Background: "Creditable stream removed from the easement were also removed from mitigation assets." In the report text, please also note that a mitigation plan addendum for the reduction in project credit was submitted to the IRT as part of the MYO/ As-Built Baseline Monitoring Report review and was approved by the IRT via email on 10/5/2020. This was noted in the text.
- Section 2.0: Methods: Per RFP 16-006991, each annual monitoring report must be submitted to the DMS by December 1st of the year during which the monitoring was conducted. Please update the text accordingly.

The text was revised to indicate the December 1st deadline.

- Section 2.1 Monitoring/ Wetland Summary: Please include soil temperature data and bud burst documentation (photos) in the report appendices to substantiate the growing season start date of March 16, 2020. The location of the data should be referenced in the report text. Bud burst photos and the soil temperature graph (Figure E-1) were added to Appendix E and are referenced in the footnote of the "Summary of Monitoring Period/Hydrology Success Criteria by Year" table in section 2.1.
- Section 2.1 Monitoring/ Vegetation Summary: Please include a brief explanation of Plot 11 not meeting the established success criteria. The explanation should be similar to what is provided in the initial monitoring summary after the first MY1 cover page. Please also report if any supplemental planting is proposed in MY2 (2021).
 An explanation for plot 11 was added to the Vegetation Summary. No supplemental planting is planned at this time, and this is indicated in the report.

- CCPV Map (Figure 2) & Table 6: No invasive areas are shown on the CCPV map or reported in Table 6. Please confirm that current invasives on the site are beneath the mapping threshold (1,000 SqF) or revise the CCPV map and table as necessary. Invasive species occurrences are scattered and are all currently below the mapping threshold. With the 2020 invasive treatments, it is not expected that invasives will be an issue, but if they increase in area to a point at or above mapping threshold during MY2 (2021), they will be reported in the annual monitoring report.
- Appendix D Cross Sections: The bankfull line appears to be missing on some of the cross-sections provided. Please review and update as necessary.
 When the bankfull elevations (dashed blue lines) were close to or equal to the MY-00 TOB (solid green lines), they were covered and were not visible. The bankfull lines have been brought to the front of the display order on the cross-section figures, so both lines are now visible when the elevations are the same.

WWC Year 1, 2020 Monitoring Summary

General Notes

- No encroachment was identified in Year 1
- No evidence of nuisance animal activity (i.e., beaver, heavy deer browsing, etc.) was observed.

Streams

• Stream monitoring show that all stream channels and structures are stable.

Wetlands

• Overall, based on groundwater gauge data, wetland hydrology improved from preconstruction conditions to year 1 (2020). Nine out of ten gauges displayed hydroperiods greater than 10% of the growing season during year 1 (2020); however, no wetland mitigation credit is being generated by site wetlands.

Vegetation

During quantitative vegetation sampling, 25 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). Year 1 (2020) vegetation measurements occurred October 19-21, 2020 and included 4 additional random sample plots (50-meter by 2-meter). Measurements of all 29 plots resulted in an average of 672 planted stems/acre excluding livestakes. Additionally, all individual plots met success criteria except plot 11 (Tables 8-10, Appendix C). Plot 11 is located in a wetland area adjacent to Gauge 8 that was meeting wetland success 231 consecutive days. This area may need additional planting of a more wet tolerant species.

Site Permitting/Monitoring Activity and Reporting History

Activity or Deliverable	Data Collection Complete	Completion or Delivery
RFP No. 16-006991 Issuance Date		September 16, 2016
RFP No. 16-006991 Opening Date		February 15, 2017
Institution Date (NCDMS Contract No. 100014)		May 22, 2017
Mitigation Plan	March 2018	November 2018
Construction Plans		January 10, 2020
404 Permit		May 13, 2019
Site Construction		March 4, 2020
Planting		March 16, 2020
As-built Baseline Monitoring (MY0)	January-March 2020	August 2020
Annual Monitoring (MY1)	November 2020	January 2021

Site Maintenance Report (2020)

Invasive Species Work	Maintenance work
7-27-2020-Kudzu, Rose, Privet, Honeysuckle, English Ivy 10-8-2020- Kudzu, Princess Tree, Privet, Rose, Japanese Bittersweet, Honeysuckle	N/A

FINAL MONITORING REPORT (MY1)

WARREN WILSON COLLEGE STREAM MITIGATION SITE

Buncombe County, North Carolina

NCDMS Project ID No. 100019 Full Delivery Contract No. 7188 USACE Action ID No. SAW-2017-01557 NCDWR No. 20171158 RFP No. 16-006991 (Issued: 9/16/16)

> French Broad River Basin Cataloging Unit 06010105

Data Collection: January - November 2020 Submission: January 2021

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Prepared by:

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax)

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

TABLE OF CONTENTS

1.0 PROJECT SUMMARY	1
1.1 Project Goals & Objectives 1.2 Project Background	
1.3 PROJECT COMPONENTS AND STRUCTURE 2 1.4 SUCCESS CRITERIA 2	-
2.0 METHODS	5
2.1 Monitoring	5
3.0 REFERENCES	8

APPENDICES

Appendix A. Background Map and Tables
Figure 1. Project Location
Table 1. Project Components and Mitigation Units
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attributes Table
Appendix B. Visual Assessment Data
Figures 2 & 2A-2E. Current Conditions Plan View
Tables 5A-5G. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Vegetation Plot Photographs
Appendix C. Vegetation Data
Table 7. Planted Bare Root Woody Vegetation
Table 8. Total Stems by Plot and Species
Table 9. Temporary Vegetation Plot Data
Table 10. Planted Vegetation Totals
Appendix D. Stream Geomorphology Data
Tables 11A-I. Baseline Stream Data Summary
Tables 12A-I. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic
Containment Parameter Distributions)
Tables 13A-I. Monitoring Data-Dimensional Morphology Summary (Dimensional
Parameters-Cross-sections)
Tables 14A-I. Monitoring Data-Stream Reach Data Summary
Cross-section Plots
Appendix E. Hydrology Data
Tables 15A-C. Channel Evidence
Stream Gauge Graphs
Table 16. Verification of Bankfull Events
Table 17A-B. Groundwater Hydrology Data
Groundwater Gauge Graphs
Bud Burst Documentation Photographs
Figure E-1. Year 1 (2020) Soil Temperature Data

Appendix F. Preconstruction Wetland Hydrology Data
 Figure 3. Preconstruction Gauge Locations
 Table 18. Preconstruction Groundwater Gauge Data Summary
 Appendix G. Responses to MY0 IRT Comments

1.0 PROJECT SUMMARY

Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Warren Wilson College Stream Restoration Site (Site).

1.1 Project Goals & Objectives

Stressors documented in the *French Broad River Basin Restoration Priorities* (RBRP) report (NCEEP 2009) include habitat degradation, poor riparian buffers, nutrient enrichment, channelization, sedimentation, and toxicity primarily attributed to urban and residential runoff and development.

Within the Site, stressors prior to construction could further be attributed to soil instability, increased runoff, and water quality impairments in the receiving watersheds. The project is not located in a Regional or Local Watershed Planning Area; however, the RBRP goals outlined below are addressed by project activities as follows (Site-specific information follows each RBRP goal in parentheses).

- 1. Reduce sediment inputs (based on the sediment model, Site construction eliminates approximately 228 tons per year [tons/year] of sediment that resulted from streambank erosion, excessive fines from channel straightening, channel incision, lack of cobble substrate in disturbed reaches, and a narrow or absent riparian buffer)
- 2. Reduce nutrient inputs (based on the nutrient model, Site construction eliminates 657.4 pounds per year [lbs/yr] of nitrogen and 54.5 lbs/yr of phosphorus due to the installation of marsh treatment areas, removal of preconstruction land uses and livestock, and elimination of fertilizer application)
- 3. Restore riparian buffers (removal of preconstruction land uses and livestock, control of invasive species, and approximately 19.6 acres of woody riparian buffers were planted adjacent to streams)
- 4. Stabilize streambanks (restored stable channels at the historic floodplain elevation, and enhanced oversized and incised channels by raising the stream invert and using grade control/habitat structures)
- 5. Restore and/or protect aquatic habitat (restored aquatic habitat in restoration and enhancement [Level I] reaches by installing grade control/habitat structures, coarsening channel bed materials, removing nutrient inputs, and planting woody riparian buffers to provide shade and organic matter to streams)
- 6. Reduce fecal coliform inputs (based on the nutrient model, Site construction eliminates 31.2 x 10¹¹ colonies [col] of fecal coliform per day by removing preconstruction land uses and livestock and treating agricultural runoff with marsh treatment areas)
- 7. Implement agricultural best management practices (BMPs) (the easement is fenced to eliminated livestock from accessing the easement and marsh treatment areas were installed).

Site specific mitigation goals and objectives were developed through the use of North Carolina Stream Assessment Method (NC SAM) analyses of preconstruction and reference stream systems at the Site (NC SFAT 2015) (see Table 1).

Stream/Wetland Targeted Functions, Goals, and Objectives

Targeted Functions	Goals	Objectives	Compatibility of Success
(1) HYDROLOGY			· • •
 (2) Flood Flow (Floodplain Access) (3) Streamside Area Attenuation (4) Floodplain Access (4) Wooded Riparian Buffer (4) Microtopography 	 Attenuate flood flow across the Site. Minimize downstream flooding to the maximum extent possible. Connect streams to functioning wetland systems. 	 Construct new channel at historic floodplain elevation to restore overbank flows and enhance existing jurisdictional wetlands Plant woody riparian buffer Remove livestock and cease agricultural practices within areas protected by the conservation easement. Deep rip floodplain soils to reduce compaction and increase soil surface roughness Protect riparian buffers with a perpetual conservation easement 	 BHR not to exceed 1.2 Document four overba Livestock excluded from Attain Wetland Hydrol Attain Vegetation Succe Conservation Easement
 (3) Stream Stability (4) Channel Stability (4) Sediment Transport (4) Thermoregulation (4) Stream Geomorphology 	• Increase stream stability within the Site so that channels are neither aggrading nor degrading.	 Construct channels with proper pattern, dimension, longitudinal profile, and substrate Remove livestock and cease agricultural practices within areas protected by the conservation easement. Construct stable channels with gravel substrate Stabilize streambanks Plant woody riparian buffer 	 Cross-section measures structures BHR not to exceed 1.2 ER of 1.4 or greater < 10% change in BHR Livestock excluded from Attain Vegetation Succession
(1) WATER QUALITY (2) Streamside Area Vegetation (3) Upland Pollutant Filtration (2) Indicators of Stressors	• Remove direct nutrient and pollutant inputs from the Site and reduce contributions to downstream waters.	 Remove livestock and reduce agricultural land/inputs Install marsh treatment areas Plant woody riparian buffer Enhance jurisdictional wetlands adjacent to Site streams Provide surface roughness and reduce compaction through deep ripping/plowing Restore overbank flooding by constructing channels at historic floodplain elevation 	 Livestock excluded fro Attain Vegetation Succ
(1) HABITAT	Γ		Т
 (2) In-stream Habitat (3) Substrate (3) Stream Stability (3) In-Stream Habitat (2) Stream-side Habitat (3) Stream-side Habitat (3) Thermoregulation 	• Improve instream and stream-side habitat.	 Construct stable channels with gravel substrate Plant woody riparian buffer to provide organic matter and shade Construct new channel at historic floodplain elevation to restore overbank flows Protect riparian buffers with a perpetual conservation easement Enhance jurisdictional wetlands adjacent to Site streams Remove invasive plant species Add large woody debris to Site channels 	 Cross-section measurer structures. Attain Vegetation Succ Conservation Easemen

ss Criteria

.2

bank events in separate monitoring years from the easement rology Success Criteria uccess Criteria nent recorded

rements and visual assessments indicate stable channels and

1.2

IR and ER from the easement uccess Criteria

from the easement uccess Criteria

arements and visual assessments indicate stable channels and

uccess Criteria nent recorded

1.2 Project Background

The Warren Wilson College Stream Mitigation Site (hereafter referred to as the "Site") encompasses a 25.3-acre easement (pending easement modification) along cold-water, unnamed tributaries (UTs) to the Swannanoa River. Warren Wilson College occupies approximately 1200 acres, and the Site is part of an actively managed farm and forest system on the Warren Wilson College property that includes livestock management areas, pastureland, agricultural row crops, and a sustainably managed forest. The Site is located approximately 2 miles west of Swannanoa and 5 miles east of Asheville in Buncombe County, North Carolina (Figure 1, Appendix A).

Prior to construction, the Site consisted of agricultural and managed forest land accessible to livestock. Site streams were part of an actively managed farm and forest system that included livestock, pastureland, agricultural row crops, and sustainable forest management. Streams were eroded vertically and laterally, received extensive sediment and nutrient inputs, and were dredged and straightened and/or rerouted to the floodplain edge. Preconstruction Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology, aided in energy dissipation, increased aquatic habitat, stabilized channel banks, and greatly reduced sediment loss from channel banks.

Preconstruction Groundwater Gauges:

Preconstruction groundwater gauges were installed along UT-3 upper (Clingman's) upon the request of IRT members to model pre-construction wetland characteristics. Data was collected for 2018 and the beginning of 2019 within gauges nested in transects perpendicular to the existing channel. In addition, a crest gauge along the existing incised reach was installed to measure overbank events.

Results of preconstruction gauge data, included in Table 12 (Appendix F, indicate that gauges near the incised stream showed reduced hydroperiod as compared to those further from the channel. 2018 exhibited normal rainfall patterns, and one gauge appeared to meet jurisdictional criteria based on groundwater level being within 12 inches of the surface for 12.5% of the growing season (26 days, based on the NRCS growing season of April 2 to November 1). 2019 exhibited wetter than average rainfall patterns, and six gauges appeared to meet the same jurisdictional criteria. In addition, the crest gauge installed on UT-3 showed no overbank events during 2018 and one during 2019 after a 4.56-inch rainfall.

1.3 Project Components and Structure

Proposed Site restoration activities generated 10,050.933 Stream Mitigation Units (SMUs – pending easement modification) as the result of the following.

- Restored 9220 linear feet of perennial stream channel by constructing stable streams in the historic floodplain location and elevation.
- Enhanced (Level I) 62 linear feet of stream by installing in-stream structures, providing proper channel dimension and appropriate floodplain width, reducing shear on eroding

banks, controlling invasive species within the riparian area, and planting with native riparian vegetation.

• Enhanced (Level II) 1974 linear feet of stream channel by removing current land use practices, controlling invasive species within the riparian area, and planting native vegetation.

Additional activities that occurred at the Site included the following.

- Installation of four marsh treatment areas to treat stormwater runoff before it enters Site streams.
- Established a minimum 30-foot-wide woody riparian buffer adjacent to Site streams,
- Fenced the conservation easement boundaries in areas used for livestock management.
- Protected the Site in perpetuity with a conservation easement.

Deviations from the construction plans included the modifications of two grade control structures. A log vane structure along the lower portion of reach UT-6B was constructed with boulders in order to accommodate the culverted crossing just upstream. Additionally, a vane arm was removed from a log vane along the upper portion of reach UT-7A in order to avoid the destruction of a mature black walnut tree. The log sill was constructed as designed and is holding grade. These changes are depicted on the As-built Plan Sheets (Appendix E). Also, HDPE pipe was replaced with corrugated metal pipe throughout the project at the request of USFWS.

Additionally, during the initial DMS as-built review, it was discovered that several culvert pipes extend into the recorded conservation easement. Once the encroachments were located and documented via GPS, easement modifications were initiated to remove any crossing materials from the conservation easement. Creditable stream removed from the easement were also removed from mitigation assets. A mitigation plan addendum for the reduction in project credit was submitted to the IRT as part of the MY0/ As-Built Baseline Monitoring Report review and was approved by the IRT via email on October 5, 2020.

Site design was completed on January 10, 2020. Construction started on September 1, 2019 and ended within a final walkthrough on March 4, 2020. Site planting was completed on March 16, 2020. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria have been established per the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring and success criteria relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving success criteria. The following table summarizes Site success criteria.

Success Criteria

	Streams						
•	All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.						
•	Continuous surface flow must be documented each year for at least 30 consecutive days.						
•	Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.						
	Entrenchment ratio (ER) must be no less than 2.2 for E- and C-type channels at any measured riffle cross-section.						
	BHR and ER at any measure riffle cross-section should not change by more than 10% from baseline condition during any given monitoring period.						
• '	The stream project shall remain stable and all other performance standards shall be met through four separate						
1	bankfull events, occurring in separate years, during the monitoring years 1-7.						
	Wetland Hydrology						
1	Groundwater gauge data will be used to observe fluctuations in groundwater hydrology pre- and postconstruction as the result of overbank events; however, no wetland mitigation credit is being acquired and there are no wetland hydrology success criteria proposed at this time.						
	Jurisdictional wetland adjacent to UT-3 will demonstrate a 10 to 20% increase in wetland hydrology as compared to pre-construction hydrology, under similar climactic conditions.						
	Vegetation						
	 Within planted portions of the site, a minimum of 320 stems per acre must be present at year 3; a minimum of 260 stems per acre must be present at year 5; and a minimum of 210 stems per acre must be present at year 7. Areas of dense river cane (canebrakes) are a natural niche habitat within the Swannanoa River floodplain that contribute native habitat for endangered species. River cane may outcompete woody seedlings during the initial establishment of vegetation. Within the Swannanoa floodplain (UT-6, UT-7, and UT-8), the presence of canebrakes may supersede the vegetative success criteria for planted stems per acre. 						

- Trees must average 6 feet in height at year 5, and 8 feet in height at year 7 in each plot.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 1 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Monitoring Schedule

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Streams							
Wetlands							
Vegetation							
Visual Assessment							
Report Submittal							

2.1 Monitoring

The monitoring parameters are summarized in the following table.

Monitoring Summary

Stream Parameters								
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported				
Stream Profile	Full longitudinal survey	As-built (unless otherwise required)	All restored stream channels	Graphic and tabular data.				
Stream Dimension	ream Dimension Cross-sections Years 1, 2, 3, 5, and 7 Total of 50 cross-sections on restored channels		Graphic and tabular data.					
Channel Stability	Visual Assessments	Yearly	All restored stream channels	Areas of concern to be depicted on a plan view figure with a written assessment and photograph of the area included in the report.				
	Additional Cross-sections	Yearly	Only if instability is documented during monitoring	Graphic and tabular data.				
Stream Hydrology	Continuous monitoring surface water gauges and trail cameras	Continuous recording through monitoring period	Total of 3 surface water gauges (UT3, UT6, & UT8)	Surface water data for each monitoring period				
Bankfull Events	Continuous monitoring surface water gauges and trail cameras	Continuous recording through monitoring period	Total of 3 surface water gauges (UT3, UT6, & UT8)	Surface water data for each monitoring period				
Bankrun Events	Visual/Physical Evidence	Continuous through monitoring period	All restored stream channels	Visual evidence, photo documentation, and/or rain data.				
		Wetland Param	eters					
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported				
Wetland Rehabilitation Groundwater gauges Preconstruction, As-built, Years 1-7		10 gauges in wetlands adjacent to UT1 ⁺ , UT3 ^{*+} , & UT6 ⁺	Graphic and tabular data.					
		Vegetation Para	neters					
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported				
Vegetation establishment and	Permanent vegetation plots 0.0247 acre (100 square meters) in size; CVS-EEP Protocol for Recording Vegetation, Version 4.2 (Lee et al. 2008)	As-built, Years 1, 2, 3, 5, and 7	25 plots spread across the Site	Species, height, planted vs. volunteer, stems/acre				
vigor	Annual random vegetation plots, 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	Number of randomly selected plots to be determined each year. as needed	Species				

* Seven groundwater monitoring gauges were installed in jurisdictional wetland areas adjacent to UT-3 to take measurements before and after hydrological modifications were performed at the Site. The preconstruction condition of the upper reach of UT-3 was an incised Eg-type channel with bank-height-ratios ranging from 1.8-2.4. The majority of UT-3 upper has been restored (priority I) with construction of channels at the historic floodplain elevation to restore overbank flows to adjacent wetlands. A stream flow gauge and trail camera were installed on UT-3 upper to verify overbank events. Groundwater gauge data will be used to observe fluctuations in groundwater hydrology pre- and postconstruction as the result of overbank events; however, no wetland mitigation credit is being acquired and there are no wetland hydrology success criteria proposed at this time. ⁺ Three groundwater gauges were installed, one adjacent to UT-1, one adjacent to UT-3 lower, and one adjacent to UT-6, in order to show no net loss in function, due to project activities, in existing wetlands along these tributaries. In order to monitor an area of potential wetland creation associated with stream channel restoration, two additional gauges (gauges 4 and 5) were installed along the right bank of UT-3 upper. This area was previously determined non-jurisdictional.

Stream Summary

All streams are functioning as designed, and no stream areas of concern were observed during year 1 (2020) monitoring. Stream morphology data is available in Appendix D.

Wetland Summary

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud	Monitoring Period Used for	10 Percent of
	Burst Documented	Determining Success	Monitoring Period
2020 (Year 1)	March 16, 2020*	March 16-November 1 (231 days)	23 days

*Based on observed/documented bud burst and data collected from a soil temperature data logger located on the Site (Figure E-1, Appendix E).

Overall, based on groundwater gauge data, wetland hydrology improved from pre-construction conditions to year 1 (2020). Nine out of ten gauges displayed hydroperiods greater than 10% of the growing season during year 1 (2020); however, no wetland mitigation credit is being generated by site wetlands. Wetland habitat adjacent to reach UT-3B (Clingman's/Little Berea) experienced increased inundation periods and improved hydrology following stream restoration. In 2019, gauges 1A, 1B, and 1C (Figure 3, Appendix F) were inundated from 1% to 27% of the growing season; whereas, in year 1 (2020), gauges 3, 4, and 5, which were installed in approximately the same locations (Figure 2, Appendix B), were inundated from 14% to 75%. Additionally, in 2019, gauges 3A, 3B, and 3C (Figure 3, Appendix F) ranged from 1% to 65% inundation; whereas, during year 1 (2020), gauges 6, 7, and 8, which were installed in approximately the same locations (Figure 2, Appendix B), ranged from 31% to 100% (Table 17, Appendix E and Table 18, Appendix F). Although several gauge malfunctions throughout the year 1 (2020) growing season hindered data collection, overall improvements in wetland hydrology were recorded in areas adjacent to UT-3B.

Vegetation Summary

During quantitative vegetation sampling, 25 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). Year 1 (2020) vegetation measurements occurred October 19-21, 2020 and included 4 additional random sample plots (50-meter by 2-meter). Measurements of all 29 plots resulted in an average of 672 planted stems/acre excluding livestakes. Additionally, all individual plots met success criteria except plot 11 (Tables 8-10, Appendix C). Plot 11 is in a wetland area adjacent to Gauge 8 that was meeting wetland success 231 consecutive days. This area may need additional planting of a more wet tolerant species. RS will evaluate this area during MY2 (2021) monitoring; however, no supplemental planting is currently proposed.

3.0 REFERENCES

- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and V.B. Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. U.S. Geological Survey, Reston, Virginia.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program (NCEEP), 2009. French Broad River Basin Restoration Priorities 2009 (online). Available at: <u>https://ncdenr.s3.amazonaws.com/s3fspublic/PublicFolder/Work%20With/Watershed%2</u> <u>OPlanners/French_Broad_RBRP_15july09.pdf</u> [June 1, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh.
- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167.
- United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016].
- United States Department of Agriculture (USDA), 2009. Soil Survey for Buncombe County North Carolina. US Department of Agriculture. Available at: <u>http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/north_carolina/buncombeNC2</u> <u>009/Buncombe_NC.pdf</u> [June 7, 2016].

Appendix A Background Map and Tables

Figure 1. Project Location Table 1. Mitigation Assets and Components Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table

Table 1. Mitigation Assets and Components Warren Wilson College Stream Mitigation Site

	arren wilson	conege si	0			-		Г
Project Segment	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Restoration Level	Mitigation Ratio	Restoration Footage/ Acreage^	Calculated Credit^	Comment
UT 1A	0+09-4+92	189	483	Restoration (Priority I)	1:1	483	483.000	
UT 1B	1+09-1+22	13	13	Enhancement (Level II)	2.5:1	12	4.800	
UT 1C	1+22-7+06	554	584- 20=564*	Restoration (Priority I)	1:1	584-42=542*	542.000	42 If is outside of the easement and therefore is non-credit-generating.
UT 3A	0+05-0+50	45	45	Enhancement (Level II)	2.5:1	50	20.000	
UT 3B	0+50-21+66	1901	2116-20- 5=2091*	Restoration (Priority I/II)	1:1	2116-52- 5=2059*	2059.000	52 If is outside of the easement and 5 If is located at a foot crossing within the easement; therefore, are non- credit-generating.
UT 3C	21+66-22+28	62	62	Enhancement (Level I)	1.5:1	62	41.333	
UT 3D	0+00-5+00	428	500	Restoration (Priority I)	1:1	500	500.000	
UT 3E	5+00-8+34	334	334	Enhancement (Level II)	2.5:1	334	133.600	
UT 3F	8+34-9+60	91	126	Restoration (Priority I)	1:1	126	126.000	
UT 3G	9+60-16+81	721	721- 21=700*	Enhancement (Level II)	2.5:1	721-21=700*	280.000	21 If is outside of the easement and therefore is non-credit-generating.
UT 4A	0+00-2+33	70	233	Restoration (Priority I)	1:1	187	187.000	
UT 4B	2+33-4+75	242	242- 20=222*	Enhancement (Level II)	2.5:1	288- 107=181*	72.400	107 If is outside of the easement and therefore is non-credit-generating.
UT 5A	0+00-0+48	48	48	Enhancement (Level II)	2.5:1	47	18.800	
UT 5B	0+48-11+58	719	1110- 31=1079*	Restoration (Priority I)	1:1	1117- 38=1079*	1079.000	38 If is outside of the easement and therefore is non-credit-generating.
UT 6A	0+08-1+63	155	155	Enhancement (Level II)	2.5:1	155	62.000	
UT 6B	2+16-16+48	713	1432- 20=1412*	Restoration (Priority I/II)	1:1	1432- 44=1388*	1388.000	44 If is outside of the easement and therefore is non-credit-generating.
UT 6C	16+48-21+43	495	495	Enhancement (Level II)	2.5:1	495	198.000	
UT 7A	0+00-19+85	2426	1985-36- 20- 45=1884*	Restoration (Priority I)	1:1	1940-39- 54=1847*	1847.000	93 If is outside of the easement and therefore is non-credit-generating.
UT 8A	0+18-10+65	957	1047- 38=1009*	Restoration (Priority I/II)	1:1	1047- 38=1009*	1009.000	38 If is outside of the easement and therefore is non-credit-generating.

*Areas located outside of the easement or at a foot path crossing within the easement and therefore are non-credit generating. ^Several credited stream segments were reduced in length during as-built due to a modification to remove all crossing materials from the easement.

MY1 Monitoring Report (Project No. 100019) Warren Wilson College Stream Restoration Site Buncombe County, North Carolina

page 3 Restoration Systems, LLC January 2021

Table 1 (continued).Project CreditsWarren Wilson College Stream Mitigation Site

		Stream			Wetland	Non-Rip	Coastal
Restoration Level	Warm	Cool	Cold	Riverine	Non-Riv	Wetland	Marsh
Restoration			9220.000				
Re-establishment							
Rehabilitation							
Enhancement							
Enhancement I			41.333				
Enhancement II			789.600				
Creation							
Preservation							
TOTALS			10,050.933				

Table 2. Project Activity and Reporting HistoryWarren Wilson College Stream Mitigation Site

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Institution Date (NCDMS Contract No. 100014)		May 22, 2017
Mitigation Plan	March 2018	November 2018
Construction Plans		January 10, 2020
404 Permit		May 13, 2019
Site Construction		March 4, 2020
Planting		March 16, 2020
As-built Baseline Monitoring (MY0)	January-March 2020	August 2020
Annual Monitoring (MY1)	November 2020	January 2021

Table 3. Project Contacts TableWarren Wilson College Restoration Site

Warren Wilson Conege Restorat	
Full Delivery Provider	Restoration Systems
	1101 Haynes Street, Suite 211
	Raleigh, North Carolina 27604
	Worth Creech
	919-755-9490
Designer	Anchor QEA of North Carolina, PLLC
	231 Haywood Street
	Asheville, NC 28801
	Sara Stavinoha
	828-771-0279
As-built Monitoring Provider	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis
	919-215-1693

Table 4. Project Attribute TableWarren Wilson Stream Mitigation Site

warren wilson Stream witigat		Proj	ect Information						
Project Name				Warren Wilson S	tream Mitigation	Site			
Project County			Buncombe County, North Carolina						
Project Area (acres)				25.3 (pending ea	sement modificati	on)			
Project Coordinates (latitude & latitude)				35.609817°I	N, 82.443540°W				
Planted Area (acres)				1	19.64				
		Project Watersh	ned Summary Inf	formation					
Physiographic Province				Blu	e Ridge				
Project River Basin				Fren	ch Broad				
USGS HUC for Project (14-digit)				06010	105070030				
NCDWR Sub-basin for Project				04	-03-02				
Project Drainage Area			49.	9 to 822.3 acres (0	0.08 to 1.28 square	e miles)			
Percentage of Project Drainage Area that	is Impervious				<5%				
CGIA Land Use Classification	Cul	Cultivated, Managed Herbaceous Vegetation, Unmanaged Herbaceous Vegetation,							
				Hardwood Swam	p, Oak/Gum/Cyp	ress			
		Reach Su	mmary Informat	ion	Γ				
Parameters	UT1	UT 3	UT4	UT 5	UT6	UT 7	UT 8		
Length of reach (linear feet)	756	3582	312	769	1363	2425	957		
Valley Classification & Confinement			lerately confined t		nfined (UT-3 & U	T-5)			
Drainage Area (acres and square miles)	171.3 ac.	822.3 ac.	153.9 ac.	98.3 ac.	49.9 ac.	141.0 ac.	64.4 ac.		
Dramage Area (acres and square nines)	(0.27 sq. mi.)	(1.28 sq. mi.)	(0.24 sq. mi.)	(0.15 sq. mi.)	(0.08 sq. mi.)	(0.22 sq. mi.)	(0.10 sq. mi.)		
Perennial, Intermittent, Ephemeral	Perennial	Perennial	Perennial	Perennial	Intermittent/ Perennial	Perennial	Perennial		
NCDWR Water Quality Classification				С					
Existing Morphological Description (Rosgen 1996)	Cg4	Eg4	G4	G3	G3	Gb4	Eg4		
Proposed Stream Classification (Rosgen 1996)	Cb4	Ce4 C4 Ce4 Ce4 Gb4		C4					
Existing Evolutionary Stage (Simon and Hupp 1986)			II/III ((Channelized/Deg	raded)				
FEMA Classification	NA	Zone AE	NA	NA	NA	NA	NA		
Thermal Regime		Cold							

Appendix B Visual Assessment Data

Figures 2 & 2A-2E. Current Conditions Plan View Tables 5A-5G. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Vegetation Plot Photographs

Prepared for:

Project:

WARREN WILSON COLLEGE STREAM MITIGATION SITE

Buncombe County, NC

Title:

CURRENT CONDITIONS PLAN VIEW

Drawn by:

KRJ

Date: DEC 2020

Scale:

1:1500

Project No.:

20-004

FIGURE

2B

Prepared for:

Project:

WARREN WILSON COLLEGE STREAM MITIGATION SITE

Buncombe County, NC

Title:

CURRENT CONDITIONS PLAN VIEW

Drawn by:

KRJ

Date: DEC 2020

Scale:

Project No.:

20-004

1:2500

FIGURE

2D

Table 5A	Visual Stream Morphology Stability Assessment
Reach ID	Warren Wilson College UT-1
Assessed Length	756

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	21	21			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth <u>></u> 1.6) 	21	21			100%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	21	21			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	21	21			100%			
		2. Thalweg centering at downstream of meander (Glide)	21	21			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	22	22			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	22	22			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	22	22			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	22	22			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	22	22			100%			

Table 5BVisual Stream Morphology Stability AssessmentReach IDWarren Wilson College UT-3Assessed Length3582

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	44	44			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth > 1.6) 	45	45			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	45	45			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	45	45			100%			
		2. Thalweg centering at downstream of meander (Glide)	45	45			100%			
				<u> </u>						
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	46	46			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	46	46			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	46	46			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	46	46			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	46	46			100%			

Table 5CVisual Stream Morphology Stability AssessmentReach IDWarren Wilson College UT-4Assessed Length312

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	6	6			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth > 1.6) 	6	6			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	6	6			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	6	6			100%			
		2. Thalweg centering at downstream of meander (Glide)	6	6			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	7	7			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	7	7			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	7	7			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	7	7			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	7	7			100%			

Table 5D	Visual Stream Morphology Stability Assessment
Reach ID	Warren Wilson College UT-5
Assessed Length	769

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	27	27			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	27	27			100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	27	27			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	27	27			100%			
		2. Thalweg centering at downstream of meander (Glide)	27	27			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	27	27			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	27	27			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	27	27			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	27	27			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	27	27			100%			

Table 5E	Visual Stream Morphology Stability Assessment
Reach ID	Warren Wilson College UT-6
Assessed Length	1363

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	46	46			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth > 1.6) 	46	46			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	46	46			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	46	46			100%			
		2. Thalweg centering at downstream of meander (Glide)	46	46			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	47	47			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	47	47			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	47	47			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	47	47			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	47	47			100%			

Table 5F	Visual Stream Morphology Stability Assessment
Reach ID	Warren Wilson College UT-7
Assessed Length	2425

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	42	42			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth > 1.6) 	43	43			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	43	43			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	43	43			100%			
		2. Thalweg centering at downstream of meander (Glide)	43	43			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	45	45			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	45	45			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	45	45			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	45	45			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	45	45			100%			

Table 5G	Visual Stream Morphology Stability Assessment
Reach ID	Warren Wilson College UT-8
Assessed Length	957

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	30	30			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	30	30			100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	30	30			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	30	30			100%	1		
		2. Thalweg centering at downstream of meander (Glide)	30	30			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	31	31			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	31	31			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	31	31			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	31	31			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	31	31			100%			

Vegetation Condition Assessment

Warren Wilson College

Planted Acreage ¹	19.64		
Vegetation Category	Definitions	Mapping Threshold	CCPV Depictio
1. Bare Areas	None	0.1 acres	none
2. Low Stem Density Areas	None	0.1 acres	none
2B. Low Planted Stem Density Areas	None	0.1 acres	none
			Т
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none
		Cu	mulative T

Easement Acreage ²	25.3		
Vegetation Category	Definitions	Mapping Threshold	CCPV Depictio
4. Invasive Areas of Concern ⁴	None	1000 SF	none
5. Easement Encroachment Areas ³	None	none	none

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1, 2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condito

Table 6

on	Number of Polygons	Combined Acreage	% of Planted Acreage
	0	0.00	0.0%
	0	0.00	0.0%
	0	0.00	0.0%
otal	0	0.00	0.0%
	0	0.00	0.0%
otal	0	0.00	0.0%

on	Number of Polygons	Combined Acreage	% of Easement Acreage
	0	0.00	0.0%
	0	0.00	0.0%

MY1 (2020) Monitoring Report (Project No. 100019) Warren Wilson College Mitigation Site

Plot 8

MY1 (2020) Monitoring Report (Project No. 100019) Warren Wilson College Mitigation Site

MY1 (2020) Monitoring Report (Project No. 100019) Warren Wilson College Mitigation Site

Appendix C Vegetation Data

Table 7. Planted Bare Root Woody VegetationTable 8. Total Stems by Plot and SpeciesTable 9. Temporary Vegetation Plot DataTable 10. Planted Vegetation Totals

Species	Total*	
Acres	19.64	
Cephalanthus occidentalis	50	
Diospyros virginiana	500	
Liriodendron tulipifera	900	
Betula nigra	2800	
Fraxinus pennsylvanica	3800	
Cornus amomum	3900	
Quercus alba	4200	
Quercus nigra	4200	
Platanus occidentalis	5600	
TOTALS	25,950*	

Table 7. Planted Bare Root Woody VegetationWarren Wilson College Stream Mitigation Site

**Approximately 5000 live stakes of willow (*Salix* spp.), elderberry (*Sambucus candensis*), silky dogwood (*Cornus amomum*), and ninebark (*Physocarpus opulifolius*) were planted, but are not included in this table.

Table 8. Planted Stems by Plot and Species

CVS Project Code 20004. Project Name: Warren Wilson College

														Curi	rent Plo	t Data	(MY1 2	020)									·		
			200	004-01-	0001	200	04-01-0	0002	2000	04-01-0	003	200	04-01-0	0004	200	04-01-0	005	200	04-01-0	006	200	004-01-	0007	20	004-01-0	8000	200	04-01-0	0009
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	river birch	Tree	1	. 1	. 1	1	1	1	10	10	10	12	12	12				2	2	2	5	5 5	5	5			2	2	. 7
Cephalanthus occidentalis	common buttonbush	Shrub																									, I	ĺ	
Cornus amomum	silky dogwood	Shrub				8	8	8	12	12	12				4	4	4				6	6 6	6	5 1	. 1	1	. 3	3	;
Diospyros virginiana	common persimmon	Tree				1	1	1													3	3	3	5			1	1	. 1
Fraxinus pennsylvanica	green ash	Tree																										í T	
Liriodendron tulipifera	tuliptree	Tree													5	5	5										3	3	;
Platanus occidentalis	American sycamore	Tree				4	4	4	3	3	3	3	3	3				1	1	1	5	5 5	5	5 10	10	10	, ,	1	
Quercus	oak	Tree	4	. 4	4	2	2	2	4	4	4	1	1	1	5	5	5	5	5	5	3	3	3	3 2	2	2	. 1	1	. 1
Quercus alba	white oak	Tree	3	3	3				2	2	2	1	1	1				11	11	11	2	2 2	2	2 1	. 1	1	. 1	1	. 1
Quercus nigra	water oak	Tree	1	. 1	. 1							6	6	6	1	1	1				2	2 2	2	2			1	1	. 1
Quercus rubra	northern red oak	Tree																									, I	ĺ	
Unknown		Shrub or Tree																										1	
Wisteria frutescens	American wisteria	Vine													1	1	1											í T	
Wisteria sinensis	Chinese wisteria	Exotic																									1	1	. 1
		Stem count	9	9	9 9	16	16	16	31	31	31	23	23	23	16	16	16	19	19	19	26	6 26	26	5 14	14	14	13	13	1.
		size (ares)		1	-		1	-		1			1	•		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	4	. 4	4	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	7	' 7	7	′	4	4	, 8	8	. ξ
	:	Stems per ACRE		364.2	364.2	647.5	647.5	647.5	1255	1255	1255	930.8	930.8	930.8	647.5	647.5	647.5	768.9	768.9	768.9	1052	1052	1052	566.6	566.6	566.6	526.1	526.1	526.1

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

P-all = Planted including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 8. Planted Stems by Plot and Species (continued)

CVS Project Code 20004. Project Name: Warren Wilson College

														Curi	rent Plo	ot Data (MY1 20	020)											
			200	04-01-0	0010	200	04-01-0	0011	200	04-01-0	012	20	004-01-0	013	200	04-01-0	014	200	04-01-0	015	200	004-01-	0016	200	04-01-0	017	200	04-01-0	JO18
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Betula nigra	river birch	Tree	2	2	2	4	4	4	3	3	3	1	L 1	1							3	3	3	6	6	6	3	3	3
Cephalanthus occidentalis	common buttonbush	Shrub										1	L 1	1													ľ		
Cornus amomum	silky dogwood	Shrub	3	3	3				2	2	2				2	2	2	3	3	3	4	. 4	. 4	4 4	4	4	1	1	. 1
Diospyros virginiana	common persimmon	Tree	3	3	3							1	L 1	1													1	1	. 1
Fraxinus pennsylvanica	green ash	Tree																											
Liriodendron tulipifera	tuliptree	Tree										2	1 4	4				2	2	2									
Platanus occidentalis	American sycamore	Tree	4	4	4				3	3	3			18	16	16	16	13	13	13	9	9	9) 3	3	3	1	1	. 1
Quercus	oak	Tree	1	1	1	2	2	2	1	1	1				2	2	2	1	1	1	5	5	5	5 3	3	3	11	11	. 11
Quercus alba	white oak	Tree	2	2	2				1	1	1							1	1	1	2	2	2	2 1	1	1			1
Quercus nigra	water oak	Tree							5	5	5							1	1	1				1	1	1	3	3	3
Quercus rubra	northern red oak	Tree										1	L 1	1										1	1	1			
Unknown		Shrub or Tree																											
Wisteria frutescens	American wisteria	Vine																											1
Wisteria sinensis	Chinese wisteria	Exotic																											1
		Stem count	15	15	15	6	6	6	15	15	15	8	8 8	26	20	20	20	21	21	21	23	23	23	8 19	19	19	20	20	20
		size (ares)		1			1			1			1			1			1			1			1			1	-
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	6	6	6	2	2	2	6	6	6	5	5 5	6	3	3	3	6	6	6	5	5	5	5 7	7	7	6	6	6
		Stems per ACRE		607	607	242.8	242.8	242.8	607	607	607	323.7	7 323.7	1052	809.4	809.4	809.4	849.8	849.8	849.8	930.8	930.8	930.8	768.9	768.9	768.9	809.4	809.4	809.4

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

P-all = Planted including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 8. Planted Stems by Plot and Species (continued)

CVS Project Code 20004. Project Name: Warren Wilson College

											Cur	rent Plo	ot Data	(MY1 2	020)											Annual	Means		
			200	04-01-	-0019	200	04-01-0	0020	200	04-01-	0021	200	04-01-0	022	200	04-01-0	023	200	04-01-0	024	200	04-01-0	025	М	Y1 (202	0)	۲M	YO (202	.0)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	river birch	Tree	4	4	4 4	. 2	2	2	5	5	5	1	1	1	3	3	3	1	1	1	4	4	4	75	75	75	77	77	77
Cephalanthus occidentalis	common buttonbush	Shrub																						1	1	1	1	1	1
Cornus amomum	silky dogwood	Shrub				1	1	1				4	4	4	3	3	3	7	7	7	2	2	2	70	70	70	75	75	75
Diospyros virginiana	common persimmon	Tree	2		2 2	-						1	1	1				3	3	3				16	16	16	22	22	22
Fraxinus pennsylvanica	green ash	Tree							1	1	. 1													1	1	1	1	1	1
Liriodendron tulipifera	tuliptree	Tree				1	1	1							1	1	1							16	16	16	18	18	18
Platanus occidentalis	American sycamore	Tree	11	1:	1 11	. 8	8	8	4	4	4	5	5	5	4	4	4	1	1	1	8	8	8	116	116	134	115	115	115
Quercus	oak	Tree				2	2	2	1	1	. 1				3	3	3	2	2	2	3	3	3	64	64	64	93	93	93
Quercus alba	white oak	Tree				1	1	1	3	3	3	2	2	2	1	1	1				2	2	2	37	37	37	35	35	35
Quercus nigra	water oak	Tree													2	2	2	2	2	2				25	25	25	29	29	29
Quercus rubra	northern red oak	Tree																						2	2	2			1
Unknown		Shrub or Tree																									5	5	Ę
Wisteria frutescens	American wisteria	Vine																						1	1	1			
Wisteria sinensis	Chinese wisteria	Exotic																2	2	2				3	3	3			
		Stem count	17	17	7 17	15	15	15	14	14	- 14	13	13	13	17	17	17	18	18	18	19	19	19	427	427	445	471	471	471
		size (ares)		1			1			1			1			1			1			1			25			25	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.62			0.62	
		Species count	3		3 3	6	6	6	5	5	5	5	5	5	7	7	7	7	7	7	5	5	5	5 13	13	13	11	11	11
		Stems per ACRE	688	688	8 688	607	607	607	566.6	566.6	566.6	526.1	526.1	526.1	688	688	688	728.4	728.4	728.4	768.9	768.9	768.9	691.2	691.2	720.3	762.4	762.4	762.4

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

P-all = Planted including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 9. MY1 Temporary Vegetation Plot DataWarren Wilson College Restoration Site

Species	Common Name	T-1 (216°)	T-2 (145°)	T-3 (212°)	T-4 (270°)
Betula nigra	River birch	2	2		1
Liriodendron tulipifera	Tulip poplar	1		1	1
Nyssa sylvatica	Black gum			2	
Diospyros virginiana	Common persimmon	1			
Quercus alba	White oak	2			1
Platanus occidentalis	American sycamore	6	1	7	1
Quercus phellos	Willow oak			9	
Quercus spp.	Oak				5
Cornus amomum	Silky dogwood	1	7	1	3
Total Number of Stems	Stem Count	13	10	20	12
	Size (Ares)	1	1	1	1
	Size (Acres)	0.02	0.02	0.02	0.02
	Species count	6	5	6	6
Stems/Acre	Stems per acre	526	405	809	486

Plot #	Planted Stems/Acre	Success Criteria Met?
1	364	Yes
2	647	Yes
3	1255	Yes
4	931	Yes
5	647	Yes
6	769	Yes
7	1052	Yes
8	567	Yes
9	526	Yes
10	607	Yes
11	243	No
12	607	Yes
13	324	Yes
14	809	Yes
15	850	Yes
16	931	Yes
17	769	Yes
18	809	Yes
19	688	Yes
20	607	Yes
21	567	Yes
22	526	Yes
23	688	Yes
24	728	Yes
25	769	Yes
T-1	526	Yes
T-2	404	Yes
Т-3	809	Yes
T-4	485	Yes
Average Planted Stems/Acre Across Permanent & Temporary Plots	672	Yes

Table 10. Planted Vegetation TotalsWarren Wilson College Stream Mitigation Site

Appendix D Stream Geomorphology Data

Tables 11A-I. Baseline Stream Data Summary Tables 12A-I. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Tables 13A-I. Monitoring Data-Dimensional Morphology Summary (Dimensional Parameters-Cross-sections) Tables 14A-I. Monitoring Data-Stream Reach Data Summary Cross-section Plots

							_						aseline						(_												
Peromotor	Gauge ²	_			I				ame/Nu	Imber	(Warre					ent/Re	ach: U				.		I	<u> </u>		1					
Parameter	Gauge	Reg	ional C	urve		Pre-	Existin	g Cond	ition			01	4 Refer	ence D	ata			Cnemt	ronics	Referen	ce Data	1		Design				Monitori	ng Baseli	ne	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft))				2.6	10.9		19.3			5.1	6.8		9.4			11.3	14.0		15.8			9.2	10.0	10.7	10.6	11.2	11.2	11.9		2.0
Floodprone Width (ft)					27.0	55.0		75.0			15.0	20.0		28.0			16.5	19.0		25.0			25.0	55.0	75.0	100.0	100.0	100.0	100.0		2.0
Bankfull Mean Depth (ft))				0.4	0.6		1.2			0.8	0.9		1.0			0.4	0.6		1.2			0.7	0.7	0.8	0.9	1.0	1.0	1.1		2.0
¹ Bankfull Max Depth (ft))				0.6	1.7		1.7			1.3	1.4		1.5			1.7	1.8		2.0			0.9	1.1	1.3	1.7	1.9	1.9	2.1		2.0
Bankfull Cross Sectional Area (ft ²))				3.2	6.8		7.1			6.2	6.2		6.2			16.7	16.7		16.7			7.1	7.1	7.1	9.4	11.1	11.1	12.8		2.0
Width/Depth Ratio)				2.1	17.0		53.2			5.1	7.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	11.1	11.5	11.5	11.9		2.0
Entrenchment Ratio)				1.4	6.9		21.2			2.7	2.9		3.0			16.5	19.0		22.0			1.3	2.9	3.0	8.4	8.9	8.9	9.5		2.0
¹ Bank Height Ratio)				1.0	1.8		5.7			1.0	1.0		1.0			1.0	1.0		1.0			1.0	1.0	1.3	1.0	1.0	1.0	1.0		2.0
Profile																													1		
Riffle Length (ft)																										1.9	14.9	8.9	55.2	14.8	20.0
Riffle Slope (ft/ft)					No die	tinct rep	atitiva na	ttern of .	riffles and	noole	0.0090	0.0400		0.0754			0.0156	0.0228	;	0.0468			0.0286	0.0457	0.0857	0.0055	0.0201	0.0192	0.0387	0.0095	20.0
Pool Length (ft))						o staighte			2 P0013																2.4	10.7	11.2	19.4	4.8	20.0
Pool Max depth (ft)							5	J			2.0	2.3		2.6			1.9	2.1		2.3			1.0	1.4	1.4						
Pool Spacing (ft))										27.3	37.1		45.8			28.8	50.7		70.7			29.9	39.9	69.8	6.9	30.6	28.0	66.9	16.2	19.0
Pattern																															
Channel Beltwidth (ft))										15.4	19.0		25.2			13.4	14.7		16.6			15.0	29.9	39.9	15.0		29.9	39.9		
Radius of Curvature (ft))				No dia	tingt rone	atitiva na	ttorn of	iffloo ond		8.7	15.8		29.4			0.8	2.2		3.3			19.9	29.9	39.9	15.0		29.9	39.9		
Rc:Bankfull width (ft/ft))				NO UIS		staighte		riffles and tivities	i poois																					
Meander Wavelength (ft))						J	9			56.5	63.8		76.0			59.8	96.3		117.2			59.8	84.7	119.6	59.8		84.7	119.6		
Meander Width Ratio											2.3	2.8		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
Transport parameters	-	-																													
Reach Shear Stress (competency) lb/f ²	2						7.	63																0.78							
Max part size (mm) mobilized at bankful																	<u> </u>														
Stream Power (transport capacity) W/m ²							50	.82																49.43							
Additional Reach Parameters											-																				
Rosgen Classification	1		•				Cg	g 4					Et	o 4					В	3 4				Cb 4				(Cb 4		
Bankfull Velocity (fps))						0																								
Bankfull Discharge (cfs))						27																								
Valley length (ft))						56	7.0																							
Channel Thalweg length (ft))							8.0																610.0					01.0		
Sinuosity (ft)								.0						.2			ļ			.0			Į	1.1					1.1		
Water Surface Slope (Channel) (ft/ft))						0.0	294					0.0	226			<u> </u>		0.0	167			<u> </u>	0.0286				0.	0163		
BF slope (ft/ft))																 						 								
³ Bankfull Floodplain Area (acres))																I														
⁴ % of Reach with Eroding Banks	6				<u> </u>												Į														_
Channel Stability or Habitat Metric	;																 														
Biological or Other Shaded cells indicate that these will typically not be filled in.	r																														

l = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the top of bank to the tor of the terrace riser/slope.

							Dura						e Strear						0 (1)											
					1		Pro	ject Na	ame/Numbe	(warr	en wiis	son/100	0019)	Segme	ent/Rea	ach: U	1 Up	oer (43	6 feet)			1								
Parameter	Gauge ²	Reg	ional C	Curve		Pre-	Existing	g Cond	ition		U	T4 Refe	rence D	ata			Chemti	ronics I	Referenc	ce Data	a		Design	n			Monitorii	ng Baseli	ne	
Dimension and Substrate - Riffle Only	1	11	1.11	Γa	Min	Mean	Med	Max	SD⁵ n	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵		Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)		LL	UL	Eq.	2.6	10.9	wea	19.3	SD ³ n	5.1	6.8	wed	9.4	30	n		14.0	wea	15.8	30	n	9.2	10.0	10.7	8.5	9.1	9.1	9.6	30	2.0
Floodprone Width (ft)						55.0		75.0		15.0	20.0		28.0			16.5			25.0			25.0	55.0	75.0	100.0	100.0	100.0	100.0		2.0
Bankfull Mean Depth (ft)					0.4	0.6		1.2		0.8	0.9		1.0			0.4	0.6		1.2			0.7	0.7	0.8	0.5	0.6	0.6	0.7		2.0
¹ Bankfull Max Depth (ft)					0.6	1.7		1.7		1.3	1.4		1.5			1.7	1.8		2.0			0.9	1.1	1.3	0.8	1.1	1.1	1.4		2.0
Bankfull Cross Sectional Area (ft ²)					3.2	6.8		7.1		6.2	6.2	1	6.2			16.7	16.7		16.7		1	7.1	7.1	7.1	4.3	5.4	5.4	6.6		2.0
Width/Depth Ratio					2.1	17.0		53.2		5.1	7.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	14.0	15.5	15.5	16.9		2.0
Entrenchment Ratio					1.4	6.9		21.2		2.7	2.9		3.0			16.5	19.0		22.0			1.3	2.9	3.0	10.4	11.1	11.1	11.8		2.0
¹ Bank Height Ratio					1.0	1.8		5.7		1.0	1.0	1	1.0	1		1.0	1.0	1	1.0		1	1.0	1.0	1.3	1.0	1.0	1.0	1.0		1.0
Profile	I						· · · · ·						1						<u> </u>										<u> </u>	<u> </u>
Riffle Length (ft)					1																	1			1.9	14.9	8.9	55.2	14.8	20.0
Riffle Slope (ft/ft)					No. etc.			the me of m		0.0090	0.0400)	0.0754			0.0156	0.0228		0.0468		1	0.0286	0.0457	0.0857	0.0055	0.0201	0.0192	0.0387	0.0095	20.0
Pool Length (ft)					No dist		etitive pat		riffles and pools																2.4	10.7	11.2	19.4	4.8	20.0
Pool Max depth (ft)						uue it	stalynie	action and a contract of the second sec	uviues	2.0	2.3		2.6			1.9	2.1		2.3			1.0	1.4	1.4						
Pool Spacing (ft)										27.3	37.1		45.8			28.8	50.7		70.7			29.9	39.9	69.8	6.9	30.6	28.0	66.9	16.2	19.0
Pattern			-	-						-	-		-	-				•	-		•	-			•	•	1	1	•	•
Channel Beltwidth (ft)										15.4	19.0		25.2			13.4			16.6			15.0	29.9	39.9	15.0		29.9	39.9		
Radius of Curvature (ft)					No dis	tinct repe	etitive pat	ttern of r	riffles and pools	8.7	15.8		29.4			0.8	2.2		3.3			19.9	29.9	39.9	15.0		29.9	39.9		
Rc:Bankfull width (ft/ft)							, staighte			50.5	<u> </u>	-	70.0			50.0	00.0		447.0			50.0	047	110.0	50.0		047	110.0		
Meander Wavelength (ft)				_						56.5 2.3	63.8 2.8	-	76.0 3.7			59.8 1.0	96.3 1.1		117.2 1.2			59.8 1.5	84.7 3.0	119.6 4.0	59.8 1.5		84.7 3.0	119.6 4.0		
Meander Width Ratio										2.3	2.0		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
Transport parameters																														
Reach Shear Stress (competency) lb/f ²							7.	6															0.8		r –					
Max part size (mm) mobilized at bankfull																														
Stream Power (transport capacity) W/m ²							50	.8															49.4							
Additional Reach Parameters																									.					
Rosgen Classification							Cg	4		Г		E	b 4					B	4				Cb 4				(Cb 4		
Bankfull Velocity (fps)							0.	6																						
Bankfull Discharge (cfs)							27																							
Valley length (ft)							189																							
Channel Thalweg length (ft)							193																478.0					58.0		
Sinuosity (ft)							1.	-		4			1.2						.0			Į	1.1		I			1.1		
Water Surface Slope (Channel) (ft/ft)					ļ		0.02	294				0.0	0226					0.0	167			 	0.0286		I		0.	0372		
BF slope (ft/ft)																														
³ Bankfull Floodplain Area (acres)																							_	_						
⁴ % of Reach with Eroding Banks			_	_																			_			_	_	_	_	_
Channel Stability or Habitat Metric			_	_																			_			_	_	_	_	
Biological or Other Shaded cells indicate that these will typically not be filled in.																														

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

							Pro	ject Na	ame/Number				e Strear 0019)				T 3 Lov	ver (87	3 feet)											
Parameter	Gauge ²	Reg	ional C	Curve		Pre-	Existing						erence D						Referen	ce Data	1		Desigr	n			Monitori	ng Baseli	ne	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵ n	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					11.5	12.1		14.1		5.1	6.8		9.4			11.3			15.8			14.8	16.0	17.1	10.6	17.0	17.0	23.5		2.0
Floodprone Width (ft)					19.0	29.0		100.0		15.0	20.0		28.0			16.5	19.0		25.0			80.0	100.0	120.0	100.0	100.0	100.0	100.0		2.0
Bankfull Mean Depth (ft)					1.3	1.5		1.6		0.8	0.9		1.0			0.4	0.6		1.2			1.1	1.1	1.2	0.9	1.0	1.0	1.2		2.0
¹ Bankfull Max Depth (ft)					1.6	2.0		2.2		1.3	1.4		1.5			1.7	1.8		2.0			1.4	1.7	2.1	1.7	1.9	1.9	2.1		2.0
Bankfull Cross Sectional Area (ft ²)					18.2	18.2		18.2		6.2	6.2		6.2			16.7	16.7		16.7			18.2	18.2	18.2	9.4	18.3	18.3	27.2		2.0
Width/Depth Ratio					7.3	8.0		10.9		5.1	7.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	11.9	16.1	16.1	20.2		2.0
Entrenchment Ratio					1.3	2.5		8.3	l İ	2.7	2.9		3.0			16.5	19.0		22.0			5.4	6.3	7.0	4.3	6.9	6.9	9.5		2.0
¹ Bank Height Ratio					1.8	2.0		2.4		1.0	1.0		1.0			1.0	1.0		1.0			1.0	1.0	1.3	1.0	1.0	1.0	1.0		2.0
Profile					-	-				-						-					-	_			-	-			-	
Riffle Length (ft)																									16.7	35.3	33.0	65.0	13.7	15.0
Riffle Slope (ft/ft)					No dia	tinct ropy	stitivo por	ttorn of r	riffles and pools	0.0090	0.0400	D	0.0754			0.0156	0.0228		0.0468			0.0141	0.0225	0.0423	0.0081	0.0183	0.0194	0.0276	0.0055	15.0
Pool Length (ft)					NU UIS		staighte																		11.3	20.4	20.3	29.2	6.5	15.0
Pool Max depth (ft)							Jotalynic	aning ac	uvilie5	2.0	2.3		2.6			1.9	2.1		2.3			1.6	2.2	2.3						
Pool Spacing (ft)										27.3	37.1		45.8			28.8	50.7		70.7			47.9	63.8	111.7	32.2	64.0	57.0	104.0	18.9	15.0
Pattern				-							1	1	1	1	1	I		•		1						T	I	T	T	
Channel Beltwidth (ft)										15.4			25.2			13.4			16.6			23.9		63.8	23.9		47.9	63.8		
Radius of Curvature (ft)					No dis	tinct repe	etitive pat	ttern of r	riffles and pools	8.7	15.8		29.4			0.8	2.2		3.3			31.9	47.9	63.8	31.9		47.9	47.9		
Rc:Bankfull width (ft/ft)							, staighte			FC F	62.0		70.0			50.0	00.0		447.0			05.0	405.7	404 5	05.0		405.7	404 F		
Meander Wavelength (ft) Meander Width Ratio				-			-	•		56.5 2.3	63.8 2.8	-	76.0 3.7			59.8			117.2 1.2			95.8 1.5		191.5 4.0	95.8 1.5		165.7 3.0	191.5 4.0		
Meander Width Ratio										2.3	2.0		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
Transport parameters																														
Reach Shear Stress (competency) lb/f ²							3.	0								T							0.9		r					
Max part size (mm) mobilized at bankfull																														
Stream Power (transport capacity) W/m ²							69	.1															66.7							
Additional Reach Parameters																									.					
Rosgen Classification							Eg	4		T		E	b 4			r –		B	4				Ce 4		—		(Ce 4		
Bankfull Velocity (fps)				1			1.	5															4.2				g	60.0		
Bankfull Discharge (cfs)							75	.8																		_		_		
Valley length (ft)							168	1.0																						
Channel Thalweg length (ft)							358	2.0															971.0				g	60.0		
Sinuosity (ft)							1.						1.2						.0				1.1					1.1		
Water Surface Slope (Channel) (ft/ft)							0.01	146				0.	0226					0.0	167				0.0155				0.	0129		
BF slope (ft/ft)			_	_																		<u> </u>			I					
³ Bankfull Floodplain Area (acres)																														
⁴ % of Reach with Eroding Banks																														
Channel Stability or Habitat Metric																														
Biological or Other																														
Shaded cells indicate that these will typically not be filled in.																														

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

									<i></i>				seline S						(
							Proje	ect Na	me/Numbe	r (Warı	ren W	/ilsor	า/10001	9) 8	Segme	nt/Rea	ich: UT	3 Upp	ber (19	95 feet))										
Parameter	Gauge ²	Reg	ional C	urve		Pre-l	Existing	j Condi	ition			UT4	Refere	nce Da	ata			Chemt	ronics l	Referen	ce Data	a		Desigr	ı			Monitori	ng Baseli	ne	
Dimension and Substrate - Riffle Only	_	LL	1.11	Eq.	Min	Mean	Med	Max	SD⁵ n	Mir		ean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)		LL	UL	Eq.	11.5		wea	14.1	5D II	5.1		ean 5.8		9.4	3D	n		14.0	wea	15.8	3D	n	14.8	16.0	17.1	14.2	16.1	15.7	18.7	3D 2.1	4.0
Floodprone Width (ft)						29.0		100.0		15.0		0.0		28.0			16.5			25.0			80.0	100.0	120.0	100.0	100.0	100.0	100.0	0.0	4.0
Bankfull Mean Depth (ft)					1.3	1.5		1.6		0.8).9		1.0			0.4	0.6		1.2			1.1	1.1	1.2	1.0	1.0	1.0	1.1	0.0	4.0
¹ Bankfull Max Depth (ft)					1.6	2.0		2.2		1.3	_	.4		1.5			1.7	1.8		2.0			1.4	1.7	2.1	1.6	1.8	1.8	1.9	0.1	4.0
Bankfull Cross Sectional Area (ft ²)					18.2	18.2		18.2		6.2	2 6	5.2		6.2			16.7	16.7		16.7			18.2	18.2	18.2	13.6	16.8	16.2	21.4	3.3	4.0
Width/Depth Ratio					7.3	8.0		10.9		5.1	7	.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	13.3	15.5	15.6	17.4	1.7	4.0
Entrenchment Ratio					1.3	2.5		8.3		2.7	' 2	.9		3.0			16.5	19.0	1	22.0	1	1	5.4	6.3	7.0	5.4	6.3	6.4	7.0	0.8	4.0
¹ Bank Height Ratio					1.8	2.0		2.4		1.0) 1	.0		1.0			1.0	1.0	1	1.0	1	1	1.0	1.0	1.3	1.0	1.0	1.0	1.0	0.0	4.0
Profile	•								<u> </u>	_		-			· · · · · ·		•	<u>n</u>			•				·				<u> </u>		·
Riffle Length (ft)										L																8.7	33.7	29.5	79.6	18.6	34.0
Riffle Slope (ft/ft)					No dia	inct rong	titivo pot	torn of -	iffles and pool	0.009	90 0.0	400	0	0.0754			0.0156	0.0228		0.0468			0.0141	0.0225	0.0423		0.0183	0.0176	0.0338	0.0059	34.0
Pool Length (ft)					NO dIST		staighte																			10.1	19.3	17.4	42.7	6.6	34.0
Pool Max depth (ft)							Stalgino	ning dot	avideo	2.0		2.3		2.6			1.9	2.1		2.3			1.6	2.2	2.3						
Pool Spacing (ft)										27.3	3 37	7.1		45.8			28.8	50.7		70.7			47.9	63.8	111.7	33.6	65.4	61.3	108.0	17.8	33.0
Pattern			-	-						1 15				05.0		1	40.4			40.0	1	-		47.0			1	47.0	00.0	1	
Channel Beltwidth (ft)				<u> </u>						15.4		9.0		25.2				14.7		16.6			23.9		63.8	23.9		47.9 47.9	63.8 63.8		
Radius of Curvature (ft) Rc:Bankfull width (ft/ft)				<u> </u>	No dist	inct repe	titive pat	tern of r	iffles and pool	8.7	1	5.8		29.4			0.8	2.2		3.3			31.9	47.9	63.8	31.9		47.9	63.8		
Rc:Bankfull width (ft/ft) Meander Wavelength (ft)						due to	staighte	ning act	tivities	56.5	5 6	3.8		76.0			59.8	96.3		117.2			95.8	135.7	101 5	95.8		165.7	191.5		
Meander Wavelength (it) Meander Width Ratio										2.3		2.8		3.7			1.0			1.2				3.0	4.0	1.5		3.0	4.0		
										2.0	,			0.1			1.0			1.2			1.0	0.0	1.0	1.0		0.0	1.0		
Transport parameters																															
Reach Shear Stress (competency) lb/f ²							3.	0															ľ –	0.9		1					
Max part size (mm) mobilized at bankfull							-																1			1					
Stream Power (transport capacity) W/m ²							69	.1																66.7		1					
Additional Reach Parameters																															
Rosgen Classification							Eg	4					Eb 4	4					E	3 4				Ce 4				(Ce 4		
Bankfull Velocity (fps)							1.																	4.2							
Bankfull Discharge (cfs)							75	-																							
Valley length (ft)							222																								
Channel Thalweg length (ft)	_						358			_													Į	2116.0					195.0		
Sinuosity (ft)							1.			_			1.2							.0				1.1					1.1		
Water Surface Slope (Channel) (ft/ft)							0.01	40		_			0.022	20					0.0	167				0.0155				0.	0139		
BF slope (ft/ft)										_																					
³ Bankfull Floodplain Area (acres)										_																					
⁴ % of Reach with Eroding Banks										_																					
Channel Stability or Habitat Metric										_																					
Biological or Other Shaded cells indicate that these will typically not be filled in.																															

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

								Projec	t Name/N					Stream				· I IT 4	(278 fe	et)											
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existing							ence Da		ginent			•	Referen	ce Data	a		Design	1			Monitori	ng Baseli	ne	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Мах	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)											5.1	6.8		9.4			11.3			15.8			8.6	9.3	10.0	14.0	14.0	14.0	14.0		1.0
Floodprone Width (ft)											15.0	20.0		28.0			16.5			25.0			20.0	70.0	120.0		100.0	100.0	100.0		1.0
Bankfull Mean Depth (ft)				1							0.8	0.9		1.0			0.4	0.6		1.2			0.6	0.7	0.7	1.0	1.0	1.0	1.0		1.0
¹ Bankfull Max Depth (ft)											1.3	1.4		1.5			1.7	1.8		2.0			0.8	1.0	1.2	1.6	1.6	1.6	1.6		1.0
Bankfull Cross Sectional Area (ft ²)											6.2	6.2		6.2			16.7	16.7		16.7			6.2	6.2	6.2	13.3	13.3	13.3	13.3		1.0
Width/Depth Ratio											5.1	7.6		11.8			8.1	12.0		14.8		1	12.0	14.0	16.0	14.7	14.7	14.7	14.7		1.0
Entrenchment Ratio											2.7	2.9		3.0			16.5	19.0		22.0			2.3	7.5	12.0	7.2	7.2	7.2	7.2		1.0
¹ Bank Height Ratio											1.0	1.0		1.0			1.0	1.0		1.0			1.0	1.0	1.3	1.0	1.0	1.0	1.0		1.0
Profile			-		-	-													-	-		-	-		-	-	-	-	-		
Riffle Length (ft)																										10.4	25.1	19.3	63.9	19.9	6.0
Riffle Slope (ft/ft)					No dis	stinct rene	etitive not	tern of r	riffles and po	ools 0	.0090	0.0400		0.0754			0.0156	0.0228		0.0468			0.0194	0.0311	0.0583	0.0095	0.0338	0.0380	0.0619	0.0189	6.0
Pool Length (ft)							staighte																			12.8	15.0	14.8	19.2	2.3	6.0
Pool Max depth (ft)											2.0	2.3		2.6			1.9	2.1		2.3			0.9	1.3	1.3						
Pool Spacing (ft)											27.3	37.1		45.8			28.8	50.7		70.7			27.9	37.3	65.2	28.3	38.0	42.0	45.3	8.2	6.0
Pattern		-		1							15 4	10.0	-	25.2			12.4	147		16.6		1	14.0	27.0	27.2	27.0		27.0	27.2		
Channel Beltwidth (ft) Radius of Curvature (ft)											15.4 8.7	19.0 15.8		25.2 29.4			13.4 0.8	14.7 2.2		16.6 3.3			14.0	27.9 27.9	37.3 37.3	27.9 18.6		27.9 27.9	37.3 37.3		
Radius of Curvature (it) Rc:Bankfull width (ft/ft)					No dis				riffles and po	ools –	0.7	15.0		29.4			0.0	2.2		5.5			10.0	21.9	57.5	10.0		21.3	57.5		
Meander Wavelength (ft)						due to	o staighte	ning ac	tivities	-	56.5	63.8		76.0			59.8	96.3		117.2			55.9	79.2	111.8	55.9		79.2	111.8		
Meander Wavelength (it)				1							2.3	2.8		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
											2.0	2.0		0.1.									110	0.0				0.0			
Transport parameters																															
Reach Shear Stress (competency) lb/f ²		-			1																		1	0.7		i – –					
Max part size (mm) mobilized at bankfull																								-							
Stream Power (transport capacity) W/m ²																								28.9							
Additional Reach Parameters																										B					
Rosgen Classification							G	4					Et	04					B	4				C4		r –			C 4		
Bankfull Velocity (fps)				T			1.																	3.9							
Bankfull Discharge (cfs)							29	.6																							
Valley length (ft)							312																								
Channel Thalweg length (ft)							362																	233.0					92.0		
Sinuosity (ft)							1.						1							.0				1.1					1.1		
Water Surface Slope (Channel) (ft/ft)							0.02	226					0.0	226					0.0	167			I	0.0194		I		0.	0235		
BF slope (ft/ft)																	<u> </u>						Į			I					
³ Bankfull Floodplain Area (acres)																															
⁴ % of Reach with Eroding Banks																															
Channel Stability or Habitat Metric																															
Biological or Other Shaded cells indicate that these will typically not be filled in.																															

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

							-	Project	t Name/Nu				iseline (ilson/1						(1024 f	eet)											
Parameter	Gauge ²	Regi	ional C	urve		Pre-	Existin				(wa		4 Refer	•		montr				Referen	ce Data	a		Design	ı			Monitori	ng Baseli	ne	
Dimension and Substrate Diffle Only	- 1		1.11	I Fa	Min	Mean	Mad	Max	SD⁵		Min	Maar	Med	Max	005	-	Min	Mean	Mad	Max	005	1	D.4im	Med	Max	Min	Maan	Mad	Max	SD⁵	-
Dimension and Substrate - Riffle Only Bankfull Width (ft)		LL	UL	Eq.	Min 5.6	Mean 6.1	Med	Max 7.6	50		Min 5.1	Mean 6.8	Med	Max 9.4	SD⁵	n	Min 11.3	Mean 14.0	Med	Max 15.8	SD⁵	n	Min 7.6	8.2	Max 8.8	Min 7.3	Mean 10.5	Med 9.9	Max 14.4	5D	n 3.0
Floodprone Width (ft)					8.0	9.0		9.0	+ +		15.0	20.0		28.0			16.5	19.0		25.0			80.0	100.0			100.0	100.0	100.0		3.0
Bankfull Mean Depth (ft)	_				0.6	0.8		0.9			0.8	0.9		1.0			0.4	0.6		1.2			0.5	0.6	0.6	0.6	0.7	0.7	0.8		3.0
¹ Bankfull Max Depth (ft)					0.8	1.2		1.3			1.3	1.4		1.5			1.7	1.8		2.0			0.7	0.9	1.1	1.0	1.3	1.5	1.5		3.0
Bankfull Cross Sectional Area (ft ²)					4.8	4.8		4.8			6.2	6.2		6.2			16.7	16.7		16.7			4.8	4.8	4.8	4.5	7.6	7.9	10.4		3.0
Width/Depth Ratio					6.5	7.8		12.0			5.1	7.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	11.9	14.7	12.5	19.8		3.0
Entrenchment Ratio					1.2	1.4		1.5			2.7	2.9		3.0			16.5	19.0		22.0			10.5	12.2	13.7	7.0	10.3	10.1	13.7		3.0
¹ Bank Height Ratio				1	2.4	4.8		5.8			1.0	1.0		1.0			1.0	1.0		1.0			1.0	1.0	1.3	1.0	1.0	1.0	1.0		3.0
Profile												_					-			•											
Riffle Length (ft)																										9.2	17.7	15.2	36.5	7.6	31.0
Riffle Slope (ft/ft)					No dist	inct ren	atitiva na	ttern of	riffles and po	ols 0.	.0090	0.0400		0.0754			0.0156	0.0228		0.0468			0.0134	0.0214	0.0401	0.0111	0.0268	0.0248		0.0105	31.0
Pool Length (ft)					NO UIS		staighte																			5.5	12.1	12.5	18.2	3.0	30.0
Pool Max depth (ft)							<u>-</u>				2.0	2.3		2.6			1.9	2.1		2.3			0.8	1.1	1.2						
Pool Spacing (ft)										2	27.3	37.1		45.8			28.8	50.7		70.7			24.6	32.8	57.4	24.0	34.6	32.5	50.2	6.8	30.0
Pattern Channel Beltwidth (ft)			-	1	r						15.4	19.0		25.2			13.4	14.7		16.6	r		12.3	24.6	32.8	12.3	-	24.6	32.8		
Radius of Curvature (ft)				-							8.7	15.8		29.4			0.8	2.2		3.3			12.3	24.0	32.8	12.3		32.8	47.9		
Rc:Bankfull width (ft/ft)					No dis				riffles and po	ols	0.7	10.0		23.4			0.0	2.2		5.5			10.4	24.0	52.0	10.4		52.0	47.5		
Meander Wavelength (ft)						due to	o staighte	ening ac	ctivities	ţ	56.5	63.8		76.0			59.8	96.3		117.2			49.2	69.7	98.4	49.2		69.7	98.4		
Meander Width Ratio											2.3	2.8		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
																			1	8	1		III.				1	1	1		
Transport parameters																															
Reach Shear Stress (competency) lb/f ²							7	.6																0.4							
Max part size (mm) mobilized at bankfull																															
Stream Power (transport capacity) W/m ²							15	5.8																15.1							
Additional Reach Parameters																															
Rosgen Classification							G						Et	o 4					E	4				Ce 4					Ce 4		
Bankfull Velocity (fps)							0																	3.8							
Bankfull Discharge (cfs)							18																	_							
Valley length (ft)			_				115																	1076.0					76.0		
Channel Thalweg length (ft) Sinuosity (ft)		_	_	_			76 1						1	2					1	.0				1076.0 1.1	r				076.0 1.1		
Water Surface Slope (Channel) (ft/ft)							0.0						0.0							.0 167				0.0134					0221		
BF slope (ft/ft)					—		0.0						0.0						0.0				1	5.0104				0			
³ Bankfull Floodplain Area (acres)																							1			1					
⁴ % of Reach with Eroding Banks																								_							
Channel Stability or Habitat Metric																															
Biological or Other																															
Shaded cells indicate that these will typically not be filled in.																															

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

								Proiect	t Name/N					Stream 00019				UT 6	(1265 1	eet)											
Parameter	Gauge ²	Reg	ional C	Curve		Pre-	Existin				. (rence D						Referen	ce Data	a		Desigr	ı			Monitori	ng Baseli	ne	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)			02	<u> </u>	4.2	5.5	Mea	6.4	00		5.1	6.8	Mea	9.4	00		11.3	14.0	Wied	15.8	00		6.1	6.6	7.0	9.5	10.4	10.1	11.7	1.0	4.0
Floodprone Width (ft)					8.0	9.0		9.0			15.0	20.0		28.0			16.5			25.0			25.0	50.0	75.0	100.0	100.0	100.0	100.0	0.0	4.0
Bankfull Mean Depth (ft)					0.5	0.6		0.7			0.8	0.9		1.0			0.4	0.6		1.2			0.4	0.5	0.5	0.5	0.7	0.7	0.9	0.2	4.0
¹ Bankfull Max Depth (ft)					0.6	1.0		1.3			1.3	1.4		1.5			1.7	1.8		2.0	1		0.6	0.7	0.9	0.9	1.1	1.1	1.3	0.2	4.0
Bankfull Cross Sectional Area (ft ²)					3.1	3.1		3.1			6.2	6.2		6.2			16.7	16.7	1	16.7			3.1	3.1	3.1	5.6	7.0	7.1	8.1	1.3	4.0
Width/Depth Ratio					5.7	9.8		13.2			5.1	7.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	11.1	16.0	15.5	22.0	5.1	4.0
Entrenchment Ratio					1.4	1.5		2.1			2.7	2.9		3.0			16.5	19.0		22.0			4.1	7.6	10.6	8.5	9.7	9.9	10.5	0.9	4.0
¹ Bank Height Ratio				Î.	2.8	3.9		5.0			1.0	1.0		1.0			1.0	1.0	1	1.0		Î.	1.0	1.0	1.3	1.0	1.0	1.0	1.0	0.0	4.0
Profile																															
Riffle Length (ft)					1									I	1				1	T		1	1	I	T	4.8	16.1	13.5	45.8	8.4	47.0
Riffle Slope (ft/ft)					No diat	in at ran	atitiva na	ttorp of	riffles and po	0	0.0090	0.0400		0.0754			0.0156	0.0228		0.0468			0.0042	0.0067	0.0125	0.0004	0.0085	0.0066	0.0510	0.0087	36.0
Pool Length (ft)					NO dist		o staighte																			2.0	10.3	10.9	15.7	3.5	46.0
Pool Max depth (ft)							Julight	ching ao			2.0	2.3		2.6			1.9	2.1		2.3			0.7	0.9	0.9						
Pool Spacing (ft)											27.3	37.1		45.8			28.8	50.7		70.7			19.8	26.4	46.1	14.5	30.9	29.5	60.5	8.8	46.0
Pattern				-									1			1		T · · -				-	1		I		1	1 10 0	I	1	-
Channel Beltwidth (ft)											15.4	19.0		25.2			13.4	14.7		16.6			9.9	19.8	26.4	9.9		19.8	26.4		
Radius of Curvature (ft)					No dist	tinct repe	etitive pa	ttern of	riffles and po	ools	8.7	15.8		29.4			0.8	2.2		3.3		_	13.2	19.8	26.4	13.2		19.8	26.4		
Rc:Bankfull width (ft/ft) Meander Wavelength (ft)						due to	o staighte	ening ac	ctivities		56.5	63.8		76.0			59.8	96.3		117.2			39.5	56.0	79.1	39.5		56.0	79.1		
Meander Wavelength (it) Meander Width Ratio				-							2.3	2.8		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
											2.0	2.0		0.7			1.0	1.1		1.2			1.0	0.0	4.0	1.0		0.0	4.0		
Transport parameters																															
Reach Shear Stress (competency) lb/f ²					I		1	.1									I						1	0.1		Ī					
Max part size (mm) mobilized at bankfull																															
Stream Power (transport capacity) W/m ²							2	.8																3.0							
Additional Reach Parameters																															
Rosgen Classification					I		G	3					El	b 4			1		E	34			T	Ce 4		1		(Ce 4		
Bankfull Velocity (fps)							0	.4																3.7							
Bankfull Discharge (cfs)								1.5																							
Valley length (ft)								35.0																							
Channel Thalweg length (ft)					<u> </u>		136							-										1455.0		<u> </u>			455		
Sinuosity (ft)					 			.0						.2			ļ			.0				1.2		 			1.2		
Water Surface Slope (Channel) (ft/ft)				_			0.0	039					0.0	226					0.0)167				0.0042				0	.0051		
BF slope (ft/ft)																															
³ Bankfull Floodplain Area (acres)					<u> </u>																										
⁴ % of Reach with Eroding Banks					 																										
Channel Stability or Habitat Metric					<u> </u>												<u> </u>														
Biological or Other Shaded cells indicate that these will typically not be filled in.																															

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

							F	Proiect	t Name/Nu				aseline /ilson/1					UT 7 ((1844 f	eet)											
Parameter	Gauge ²	Regi	ional C	Curve		Pre-	Existin				(110)		4 Refer						•	Referen	ce Data	a		Design	n			Monitori	ng Baseli	ne	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n N	Vin	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)				- 9.	7.0	7.4		9.7			5.1	6.8	mea	9.4			11.3	14.0	mou	15.8	02		8.6	9.3	10.0	10.1	11.9	12.2	13.2	1.4	4.0
Floodprone Width (ft)					10.0	13.0		17.0			5.0	20.0		28.0			16.5	19.0		25.0			20.0	70.0	120.0		100.0	100.0	100.0	0.0	4.0
Bankfull Mean Depth (ft)					0.6	0.8		0.9		(0.8	0.9		1.0			0.4	0.6		1.2			0.6	0.7	0.7	0.5	0.7	0.7	0.8	0.1	4.0
¹ Bankfull Max Depth (ft)					0.9	1.1		1.3		1	1.3	1.4		1.5			1.7	1.8		2.0			0.8	1.0	1.2	0.8	1.1	1.2	1.3	0.2	4.0
Bankfull Cross Sectional Area (ft ²)					6.2	6.2		6.2		6	6.2	6.2		6.2	1		16.7	16.7		16.7		1	6.2	6.2	6.2	5.2	8.3	8.6	10.7	2.5	4.0
Width/Depth Ratio					7.9	8.8		15.2		5	5.1	7.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	15.5	17.8	18.0	19.6	1.7	4.0
Entrenchment Ratio					1.4	1.5		2.4		2	2.7	2.9		3.0			16.5	19.0		22.0			2.3	7.5	12.0	7.6	8.5	8.2	9.9	1.1	4.0
¹ Bank Height Ratio					1.4	1.9		2.6		1	1.0	1.0		1.0			1.0	1.0		1.0			1.0	1.0	1.3	1.0	1.0	1.0	1.0	0.0	4.0
Profile									<u> </u>																						
Riffle Length (ft)																										7.7	27.4	24.3	91.3	15.5	44.0
Riffle Slope (ft/ft)					No dist	tinct rop	stitivo po	ittern of	riffles and po	0.0	0090	0.0400		0.0754			0.0156	0.0228		0.0468			0.0194	0.0311	0.0583	0.0003	0.0126	0.0097	0.0396	0.0113	44.0
Pool Length (ft)					ino uisi		staighte																			4.0	11.3	11.7	15.8	2.7	44.0
Pool Max depth (ft)							olaigint	orning ao			2.0	2.3		2.6			1.9	2.1		2.3			0.9	1.3	1.3						
Pool Spacing (ft)										2	27.3	37.1		45.8			28.8	50.7		70.7			27.9	37.3	65.2	22.3	44.2	40.1	107.9	16.3	43.0
Pattern		-	-	-							5.4	10.0	1	05.0	1	1	40.4	447	1	10.0	1	.	110	07.0	07.0	07.0	1	07.0	07.0		
Channel Beltwidth (ft)					-						5.4	19.0		25.2 29.4			13.4	14.7 2.2		16.6		-	14.0	27.9	37.3	27.9		27.9	37.3		
Radius of Curvature (ft) Rc:Bankfull width (ft/ft)					No dist	tinct repe	etitive pa	ttern of	riffles and po	ols	8.7	15.8		29.4			0.8	2.2		3.3			18.6	27.9	37.3	18.6		27.9	37.3		
Meander Wavelength (ft)						due to	staighte	ening ac	ctivities	5	6.5	63.8		76.0			59.8	96.3		117.2			55.9	79.2	111.8	55.9		79.2	111.8		
Meander Wavelength (it) Meander Width Ratio				-							2.3	2.8		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
										2	2.0	2.0		0.7			1.0	1.1		1.2			1.0	0.0	4.0	1.0		0.0	4.0		
Transport parameters																															
Reach Shear Stress (competency) lb/f ²					1		2	.1									Ī						1	0.7							
Max part size (mm) mobilized at bankfull																															
Stream Power (transport capacity) W/m ²							30).1																28.9							
Additional Reach Parameters																															
Rosgen Classification							Gł						Ek	o 4					E	34				Eb 4					Eb 4		
Bankfull Velocity (fps)							1.																	3.9							
Bankfull Discharge (cfs)								3.9																							
Valley length (ft)								35.0																							
Channel Thalweg length (ft)					 		242							0						0				1973.0		 			973		
Sinuosity (ft)								.0					1							.0)167				1.1					1.1		
Water Surface Slope (Channel) (ft/ft) BF slope (ft/ft)							0.0	202					0.0	226					0.0	101				0.0194	•	<u> </u>		0	0103		
³ Bankfull Floodplain Area (acres)																															
⁴ % of Reach with Eroding Banks			_	_																				_	_						
Channel Stability or Habitat Metric			_	_																				_	_						
Biological or Other Shaded cells indicate that these will typically not be filled in.																															

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

								Projec	t Name/N				iseline Vilson/*					: UT 8	(760 fe	eet)											
Parameter	Gauge ²	Regi	ional C	Curve		Pre-	Existin	g Cond	lition			UT	4 Refer	ence Da	ata			Chemt	ronics	Referen	ce Data	a		Desigr	1			Monitori	ng Baseli	ne	
Dimension and Substrate - Riffle Only	_	LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n l	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)				-4.	5.6	6.8	meu	9.4	02		5.1	6.8	meu	9.4	02		11.3	14.0	mea	15.8	02		6.6	7.1	7.6	10.3	12.0	12.1	13.7		3.0
Floodprone Width (ft)					11.0	12.0		19.0			15.0	20.0		28.0			16.5			25.0			25.0	50.0	75.0	100.0	100.0	100.0	100.0		3.0
Bankfull Mean Depth (ft)					0.4	0.5		0.6			0.8	0.9		1.0			0.4	0.6		1.2			0.5	0.5	0.5	0.6	0.7	0.7	0.7		3.0
¹ Bankfull Max Depth (ft)					0.6	0.8		0.9			1.3	1.4		1.5			1.7	1.8		2.0			0.6	0.8	0.9	1.2	1.4	1.4	1.7		3.0
Bankfull Cross Sectional Area (ft ²)					3.6	3.6	1	3.6			6.2	6.2	1	6.2	1		16.7	16.7	1	16.7		1	3.6	3.6	3.6	6.4	8.3	8.3	10.2		3.0
Width/Depth Ratio					8.7	12.8		24.5			5.1	7.6		11.8			8.1	12.0		14.8			12.0	14.0	16.0	16.6	17.5	17.7	18.3		3.0
Entrenchment Ratio					1.8	2.0		2.0			2.7	2.9		3.0			16.5	19.0		22.0			3.8	7.0	9.9	7.3	8.4	8.2	9.7		3.0
¹ Bank Height Ratio					2.3	2.7		3.8			1.0	1.0		1.0			1.0	1.0		1.0			1.0	1.0	1.3	1.0	1.0	1.0	1.0		3.0
Profile																															
Riffle Length (ft)																										7.8	15.9	13.8	32.4	7.2	27.0
Riffle Slope (ft/ft)					No dia	tinot ro-	otitivo r-	ttorn of	riffles and po	0.	.0090	0.0400		0.0754			0.0156	0.0228		0.0468			0.0144	0.0231	0.0433	0.0002	0.0098	0.0101	0.0231	0.0056	27.0
Pool Length (ft)					NO dis		o staighte																			6.8	12.2	12.4	19.9	2.6	27.0
Pool Max depth (ft)						uue ii	5 stalgint	ening ac			2.0	2.3		2.6			1.9	2.1		2.3			0.7	1.0	1.0						
Pool Spacing (ft)										2	27.3	37.1		45.8			28.8	50.7		70.7			21.3	28.4	49.7	24.1	32.2	30.6	48.2	6.9	26.0
Pattern			-									•	-		-			1			•		-	•	•		1	1	•	•	
Channel Beltwidth (ft)											15.4	19.0		25.2			13.4	14.7		16.6			10.6	21.3	28.4	10.6		21.3	28.4		
Radius of Curvature (ft)					No dis	tinct rep	etitive pa	ttern of	riffles and po	ols	8.7	15.8		29.4			0.8	2.2		3.3			14.2	21.3	28.4	14.2		21.3	28.4		
Rc:Bankfull width (ft/ft)						due to	, staighte	ening ac	tivities		50.5	00.0		70.0			50.0	00.0		447.0			40.0	00.0	05.0	40.0		01.0	05.0		
Meander Wavelength (ft)											56.5 2.3	63.8 2.8		76.0 3.7			59.8	96.3 1.1		117.2 1.2		_	42.6	63.9 3.0	85.2 4.0	42.6 1.5		64.0 3.0	85.2		
Meander Width Ratio											2.3	2.0		3.7			1.0	1.1		1.2			1.5	3.0	4.0	1.5		3.0	4.0		
Transport parameters																															
Reach Shear Stress (competency) lb/f ²							1	.1															1	0.4		Г					
Max part size (mm) mobilized at bankfull																															
Stream Power (transport capacity) W/m ²							3	.9																12.3							
Additional Reach Parameters																															
Rosgen Classification							E	g 4					Ek	o 4					E	34				C 4					C 4		
Bankfull Velocity (fps)							0	.4																3.8							
Bankfull Discharge (cfs)								3.5																							
Valley length (ft)								47.0																							
Channel Thalweg length (ft)								7.0																874.0					574.0		
Sinuosity (ft)				_	—			.0					1							.0				1.2					1.2		
Water Surface Slope (Channel) (ft/ft)			_		<u> </u>		0.0	046					0.0	226					0.0	167				0.0144				0	.0063		
BF slope (ft/ft)																															
³ Bankfull Floodplain Area (acres)																															
⁴ % of Reach with Eroding Banks				_	<u> </u>																										
Channel Stability or Habitat Metric					<u> </u>																										
Biological or Other Shaded cells indicate that these will typically not be filled in.																															

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

Parameter	Pre-Existing Condition	Reference Reach(es) Data	Reference Reach(es) Data	Design	As-built/Baseline
¹ Ri% / Ru% / P% / G% / S%					49 5 39 10
¹ SC% / Sa% / G% / C% / B% / Be%					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)					
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0					

Table 12a. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 1 Lower (572 feet)

Table 12b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 1 Upper (436 feet)

Parameter	Pre-Ex	isting Conditi	on	Ref	erence Re	each(es)	Data	Referer	nce Re	ach(es)	Data	Des	ign		As-b	uilt/Bas	eline
¹ Ri% / Ru% / P% / G% / S%														58	5 20	6 7	
¹ SC% / Sa% / G% / C% / B% / Be%																	
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																	
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																	
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																	

Table 12c. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 3 Lower (873 feet)

Parameter	Pre	-Exis	ting C	Condit	tion		Refe	erenc	e Read	:h(es)	Data		Ref	erence	Rea	ch(es)	Data		0	Design				As-b	uilt/Bas	eline	
¹ Ri% / Ru% / P% / G% / S%																						55	3	32	10		
¹ SC% / Sa% / G% / C% / B% / Be%																											
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																											
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																											
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																											

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach foolage into the classes indicated and provide the percentage of the total reach foolage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Parameter	Pre-E>	cisting (Condition		Referen	ce Read	:h(es) Da	ta	Ref	erence Rea	ch(es) [Data		Des	ign			As-bu	uilt/Baseli	ne	
¹ Ri% / Ru% / P% / G% / S%																52	2 6	30	12		
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																					
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

Table 12d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 3 Upper (1995 feet)

Table 12e. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 4 (278 feet)

Parameter	Pre-Exi	isting Co	ondition		Referenc	e Reac	h(es) Da	ita	Refer	ence	Reach(es) Da	ita		[Design			As-	built/Ba	seline	
¹ Ri% / Ru% / P% / G% / S%																		52	3 3	1 9		
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																						
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Table 12f. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 5 (1024 feet)

Parameter	Pr	e-Existing (Condition	Re	eference	e Reach	(es) Data	l	Reference	e Reach(es) Data		Design			As-b	uilt/Baseline)
¹ Ri% / Ru% / P% / G% / S%															51	4 34	11	
¹ SC% / Sa% / G% / C% / B% / Be%																		
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																		
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																		

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach foolage into the classes indicated and provide the percentage of the total reach foolage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Parameter	F	Pre-Exist	ting Condit	lion	Reference	e Reach(es) Data		Refe	rence l	Reac	h(es) Data		Des	ign				As-bu	ilt/Baseli	ne	
¹ Ri% / Ru% / P% / G% / S%																	50	6	31	10		
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																						
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Table 12g. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 6 (1265 feet)

Table 12h. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 7 (1844 feet)

Parameter	Pre	-Existing C	Condition	F	Reference	e Reach	n(es) Dat	а	Referen	ce Re	each(es)	Data		Des	sign				As-bu	uilt/Base	line	
¹ Ri% / Ru% / P% / G% / S%																	61	5	25	7		
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																						
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Table 12i. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 8 (760 feet)

Parameter	Pr	e-Existing	Condition	Re	eference	e Reach	(es) Data	l	Reference	e Reach(es) Data		Design	l		A	s-built/Base	eline
¹ Ri% / Ru% / P% / G% / S%																49 5	38 9	
¹ SC% / Sa% / G% / C% / B% / Be%																		
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																		
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																		

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

				Ta	able 1						ensior													tions)	1							
						P	roject	t Nam	e/Nur	nber	(Warre	en Wi	lson/	10001	9) S	Segme	ent/Re	each:	UT 1	Lowe	er (572	? feet)										
		c	Cross S	ection	1 (Riffl	e)			Ū	Cross S	Section	2 (Poo	I)			0	Cross S	ection	3 (Poo	ol)			С	ross S	ection	4 (Riffl	e)					
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+				
Record elevation (datum) used							1																									1
Bankfull Width (ft)	11.9	13.4						8.2	8.2						9.2	9.3						10.6	11.8									
Floodprone Width (ft)	100.0	100.0						NA	NA						NA	NA						100.0	100.0									
Bankfull Mean Depth (ft)		1.0						1.0	1.0						0.8	0.8						0.9	0.8									
Bankfull Max Depth (ft)	2.1	1.9						1.9	1.9						1.4	1.5						1.7	1.7									
Low Bank Height (ft)	2.1	1.9						1.9	1.9						1.4	1.5						1.7	2.0									
Bankfull Cross Sectional Area (ft 2)	12.8	12.8						8.3	8.3						7.4	7.4						9.4	9.4									
Bankfull Width/Depth Ratio	11.1	14.0						NA	NA						NA	NA						11.9	14.8									
Bankfull Entrenchment Ratio	8.4	7.5						NA	NA						NA	NA						9.5	8.5									
Bankfull Bank Height Ratio		1.0						1.0	1.0						1.0	1.0						1.0	1.2									
Cross Sectional Area between end pins (ft ²)	46.9	42.4						22.5	22.5						23.2	23.4						15.8	15.6									
d50 (mm)																																

				Та	able 1						ensior													ions)						 	
						Р	roject	Nam	e/Nur	nber	(Warr	en Wi	lson/	10001	9) 8	Segm	ent/Re	ach:	UT 1	Uppe	r (436	feet)										
		(Cross S	ection	5 (Riff	e)			(Cross S	Section	6 (Poo	I)				Cross S	ection	7 (Poo	I)			С	ross S	ection	8 (Riffl	e)					
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+				
Record elevation (datum) used																																
Bankfull Width (ft)	8.5	9.0						6.2	9.0						10.0	11.8						9.6	10.0									
Floodprone Width (ft)	100.0	100.0						NA	NA						NA	NA						100.0	100.0									
Bankfull Mean Depth (ft)	0.5	0.5						0.6	0.4						0.9	0.8						0.7	0.7									
Bankfull Max Depth (ft)	0.8	1.0						1.3	1.1						2.3	1.8						1.4	1.4									
Low Bank Height (ft)	0.8	1.0						1.3	1.1						2.3	1.8						1.4	1.4									
Bankfull Cross Sectional Area (ft 2)	4.3	4.3						3.8	3.8						9.0	9.0						6.6	6.6									
Bankfull Width/Depth Ratio	16.9	18.8						NA	NA						NA	NA						14.0	15.2									
Bankfull Entrenchment Ratio	11.8	11.1						NA	NA						NA	NA						10.4	10.0									
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0									
Cross Sectional Area between end pins (ft 2)	11.6	13.5						14.1	18.1						17.1	13.6						10.3	9.6									
d50 (mm)																																

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated that in datum it determined to be necessary."

				Та	able 1	3c. N	/lonito	oring l	Data -	Dime	ensior	nal Mo	orpho	logy	Sumr	nary (Dime	nsion	al Pa	ramet	ers –	Cross	s Sec	ions))									
						Р	roject	Nam	e/Nur	nber	(Warro	en Wi	lson/	10001	9) S	Segme	ent/Re	each:	UT 3	Lowe	r (873	feet)												
		C	Cross S	ection	1 (Riff	e)				Cross S	Section	2 (Poo)			(Cross S	ection	3 (Poo	ol)			С	ross S	ection	4 (Riffl	e)							
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+						
Record elevation (datum) used																																		
Bankfull Width (ft)	23.5	31.6						13.8	11.1						14.5	21.0						17.6	23.8											
Floodprone Width (ft)	100.0	100.0						NA	NA						NA	NA						100.0	100.0											
Bankfull Mean Depth (ft)		0.9						1.0	1.5						0.8	1.0						0.9	0.7											
Bankfull Max Depth (ft)		2.0						2.5	2.7						2.6	2.3						1.4	1.4											
Low Bank Height (ft)		2.0						2.5	2.6						2.6	2.3						1.4	1.4											
Bankfull Cross Sectional Area (ft 2)	27.2	27.2						16.7	16.7						21.3	21.3							17.0											
Bankfull Width/Depth Ratio	20.2	36.7						NA	NA						NA	NA						18.1	33.3											
Bankfull Entrenchment Ratio	-	3.2						NA	NA						NA	NA						5.7	4.2											
Bankfull Bank Height Ratio		1.0						1.0	1.0						1.0	1.0						1.0	1.0											
Cross Sectional Area between end pins (ft 2)	45.6	46.3						31.1	31.9						43.1	39.4						39.2	38.1									!		
d50 (mm)																																		
		C	Cross S	ection	6 (Riff	e)				Cross S	Section	7 (Poo)			C	cross S	ection	8 (Riffl	e)			C	ross S	ection	9 (Riffl	e)		C	ross S	ection '	10 (Poo)	

				Та	able 1																ters – r (199			tions)										
	r		Cross S	Section	5 (Poo		oject	Name				6 (Riffl		0001	9) 3 			Section			(199	5 Teel		Cross	Section	1 8 (Poo	50		T	-	ross S	ection	9 (Riffle	a)	
Based on fixed baseline bankfull elevation ¹	Base		MY2		<u> </u>		MY+	Base						MY+	Base						MY+	Base						MY+	Base	MY1			<u> </u>	MY5	MY+
Record elevation (datum) used																																	<u> </u>		
Bankfull Width (ft)	14.3	13.9						18.7	19.7						14.2	24.8						16.0	14.9						16.9	27.7					
Floodprone Width (ft)	NA	NA						100.0	100.0						100.0	100.0						NA	NA						100.0	100.0					
Bankfull Mean Depth (ft)	1.3	1.4						1.1	1.1						1.0	0.5						1.3	1.4						1.0	0.6					
Bankfull Max Depth (ft)	2.2	2.4						1.9	1.9						1.8	1.4						2.9	2.7						1.6	1.5				()	
Low Bank Height (ft)	2.2	2.3						1.9	1.9						1.8	1.4						2.9	2.7						1.6	1.5				()	
Bankfull Cross Sectional Area (ft 2)	19.1	19.1						21.4	21.4						13.6	13.6						20.8	20.8						16.4	16.4				i T	
Bankfull Width/Depth Ratio	NA	NA						16.3	18.1						15.0	45.2						NA	NA						17.4	46.8					
Bankfull Entrenchment Ratio	NA	NA						5.4	5.1						7.0	4.0						NA	NA						5.9	3.6					
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0				i T	
Cross Sectional Area between end pins (ft ²)	61.5	66.1						31.0	29.9						29.5	23.1						28.5	30.5						28.5	22.9				i T	
d50 (mm)			1									1	1								1										1				
		C	ross S	ection	10 (Po	ol)			C	ross S	ection	11 (Poo	ol)			C	ross S	Section	12 (Riff	fle)															
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+													(T	
Record elevation (datum) used																																			
Bankfull Width (ft)	16.4	15.8						20.7	22.9						14.6	13.4																		()	
Floodprone Width (ft)	NA	NA						NA	NA						100.0	100.0																		i T	
Bankfull Mean Depth (ft)	1.0	1.1						1.4	1.3						1.1	1.2																		i T	
Bankfull Max Depth (ft)	2.5	2.7						3.3	3.0						1.9	2.5																			
Low Bank Height (ft)	2.5	2.7						3.3	2.9						1.9	2.5																			
Bankfull Cross Sectional Area (ft 2)	16.7	16.7						28.8	28.8						16.0	16.0																			
Bankfull Width/Depth Ratio	NA	NA						NA	NA						13.3	11.2																		i T	_
Bankfull Entrenchment Ratio	NA	NA						NA	NA						6.8	7.5																			
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0						1.0	1.0																			
Cross Sectional Area between end pins (ft ²)	29.3	25.4						52.7	50.2						36.8	37.4																		i T	_
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum elablished. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

				Та	able 1	3e. N															ers –		s Sec	ions)											
							Pro	ject N						on/10	0019)) Se	gmen	t/Rea	ch: U	T 4 (2	78 fee	et)													
			Cross S									2 (Riffl																							
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+																					
Record elevation (datum) used																																			1
Bankfull Width (ft)	12.0	11.0						14.0	20.5																										
Floodprone Width (ft)	NA	NA						100.0	100.0																										
Bankfull Mean Depth (ft)	1.0	1.1						1.0	0.6																										
Bankfull Max Depth (ft)	1.9	1.9						1.6	1.6																										
Low Bank Height (ft)	1.9	1.9						1.6	1.6																										
Bankfull Cross Sectional Area (ft ²)	11.8	11.8						13.3	13.3																										
Bankfull Width/Depth Ratio	NA	NA						14.7	31.6																										1
Bankfull Entrenchment Ratio	NA	NA						7.2	4.9																										
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0																										
Cross Sectional Area between end pins (ft 2)	21.1	21.6						18.6	18.5																										
d50 (mm)																																			
				Та	able 1	13f. M	lonito	ring [Data -	Dime	ensior	nal Mo	orpho	logy	Sumn	nary (Dime	nsion	al Pa	ramet	ers –	Cross	Sect	ions)											
																					024 fe			,											
	I	(Cross S	Section	1 (Poo	ol)						2 (Riffl			T I		Cross S					í /	С	ross Se	ection 4	4 (Riffle	e)		I	(Cross S	ection	5 (Poo	0	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base					MY5	MY+	Base						MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	11.1	11.7			1			9.9	10.5						8.6	9.0						21.1	21.0						7.8	8.4					
Floodprone Width (ft)	NA	NA						100.0	100.0						NA	NA						100.0	100.0						NA	NA					
Bankfull Mean Depth (ft)	1.4	1.3						0.8	0.8						0.9	0.8						0.3	0.3						1.1	1.0					
Bankfull Max Depth (ft)	2.6	2.6						1.5	1.3						1.5	1.6						1.2	1.4						1.8	1.9					
Low Bank Height (ft)	2.6	2.6						1.5	1.3						1.5	1.5						1.2	1.4						1.8	2.0					
Bankfull Cross Sectional Area (ft ²)	15.3	15.3						7.9	7.9						7.4	7.4						7.3	7.3						8.7	8.7					
Bankfull Width/Depth Ratio	NA	NA						12.5	14.0						NA	NA						61.0	60.4						NA	NA			\neg		
Bankfull Entrenchment Ratio	NA	NA						10.1	9.5						NA	NA						4.7	4.8						NA	NA					1
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0						1.0	0.9						1.0	1.0						1.0	1.1					
Cross Sectional Area between end pins (ft 2)	22.2	21.4			1			13.4	13.8						10.7	11.2						6.2	7.3						19.7	20.9					1
d50 (mm)																																	_		
		C	Cross S	ection	6 (Riff	le)																													
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+																												
Record elevation (datum) used																																			
Bankfull Width (ft)	14.4																																		
Floodprone Width (ft)	100.0	100.0																															_		
Bankfull Mean Depth (ft)	0.7	0.6]	
Bankfull Max Depth (ft)	1.5	1.4			1						1 -						1		1														Ţ	Ţ	. –
Low Bank Height (ft)	1.5	1.3																																	
Bankfull Cross Sectional Area (ft ²)	10.4	10.4																																	
Bankfull Width/Depth Ratio	19.8	32.2			1					1	1				1	1	1		1																
Bankfull Entrenchment Ratio	7.0	5.5			1						1								1																
Bankfull Bank Height Ratio	1.0	0.9			-	+					1				<u> </u>		1		1	+															
Cross Sectional Area between end pins (ft ²)	20.0	18.2			1					1	1				1	1	1		1																
d50 (mm)	20.0				-	1				1	-	1			<u> </u>	1	-	1		1								1							
050 (IIIII)		i	1	1	1	1	1			1	1	1	1		1	1	1	1	1	1	1							1	1		1		,	. /	

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

				Та	able 1	3g. N	/lonito	oring	Data ·	Dim	ensio	nal Mo	orpho	logy	Sumr	nary	Dime	ensior	nal Pa	arame	ters -	Cros	s Sec	tions)										
			Cross S	Contion	1 (Boo		Proj				er (w Section			00/100	JU19)			Section			265 fe	et)			ection	4 (D;#	lo)		r		Cross S	oction	5 /D;#I		
Based on fixed baseline bankfull elevation ¹	Base					,	MN/ -	Deer					,	107.	Deer					,	MY+	Dees	-				.,	1417.	Base				<u>`</u>	<i>'</i>	104
Record elevation (datum) used	Base	IVI Y 1	MY2	IVIY3	MY4	MITS	IVI Y +	Base	IVI Y 1	IVI Y Z	IVI Y 3	MY4	NITS	IVI Y +	Base	INI Y 1	IVI Y Z	MY3	IVI Y 4	MI15	INI Y +	Base	MYI	MY2	MY3	NIY4	MY5	IVI Y +	Base	IVI Y 1	MYZ	NI¥3	MY4	NIT5	IVI Y +
																		-													-				
	9.0	11.2						10.2	10.6 100.0										-	-	-	10.1	13.6						9.5	12.7					
Floodprone Width (ft) Bankfull Mean Depth (ft)	NA	NA 0.7						100.0							NA 0.9	NA 0.7			-	-	-	100.0	100.0						100.0						
Bankfull Mean Depth (ft) Bankfull Max Depth (ft)	0.9							0.6	0.5									-	-	-		0.8	0.6						0.9	0.6	-				
Low Bank Height (ft)	1.7	1.6						0.9							1.7	1.3		-	-	-		1.1	1.1						1.3	1.3	-				
5 17	1.7	1.6						0.9	0.9						1.7	1.2			-	-	-	1.1	1.1						1.3	1.3					
Bankfull Cross Sectional Area (ft 2)	8.3	8.3						5.6	5.6						9.8	9.8		-				8.0	8.0						8.1	8.1	-				
Bankfull Width/Depth Ratio	NA	NA						18.3	20.1						NA	NA			-	-	-	12.6	23.1						11.1	19.9					
Bankfull Entrenchment Ratio	NA	NA						9.8	9.4						NA	NA		-				9.9	7.4						10.5	7.9	-				
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0						1.0	0.9			-	-	-	1.0	1.0						1.0	1.0					
Cross Sectional Area between end pins (ft ²)	19.4	17.5						14.3	15.1						25.8	25.3			_			16.6	17.5					_	12.8	12.9					
d50 (mm)																																			
			Cross S								Section							Section							1						1				
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+														
Record elevation (datum) used																																			
Bankfull Width (ft)	9.6	13.1						13.2	13.2							13.2																			
Floodprone Width (ft)	NA	NA						NA	NA						100.0																				
Bankfull Mean Depth (ft)	0.9	0.6						0.8	0.8						0.5	0.5																			
Bankfull Max Depth (ft)	1.5	1.4						1.8	1.7						1.0	1.0																			
Low Bank Height (ft)	1.5	1.3						1.8	1.6						1.0	1.1																			
Bankfull Cross Sectional Area (ft 2)	8.4	8.4						11.1	11.1						6.3	6.3																			
Bankfull Width/Depth Ratio	NA	NA						NA	NA						22.0	27.7																			
Bankfull Entrenchment Ratio	NA	NA		l		1	1	NA	NA		1				8.5	7.6	1	1	1		1			l	1	1	1		1		1				
Bankfull Bank Height Ratio	1.0	0.9		l		1		1.0	0.9						1.0	1.1	1							l		1	1	1	1						
Cross Sectional Area between end pins (ft 2)	18.5	16.9						26.5	26.5						17.4	15.5																			
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the bas

				Та	able 1	3h. N														arame			s Sec	tions)										
							Proj	ect N	ame/l	lumb	er (W	arren	Wilso	on/100	0019)	Seg	gmen	t/Rea	ch: U	T 7 (1	844 fe	et)													
		C	ross S	ection	1 (Riffl	e)			(Cross S	Section	2 (Poo	I)			(Cross S	Section	3 (Riff	fle)			(Cross S	Section	4 (Poo	ol)			C	cross S	ection	5 (Riffl	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	12.9	15.1						14.2	18.4						13.2	14.7						11.4	12.6						11.6	12.2					
Floodprone Width (ft)	100.0	100.0						NA	NA						100.0	100.0						NA	NA						100.0	100.0					
	0.8	0.7						1.3	1.0						0.8	0.7						1.1	1.0						0.6	0.6					
Bankfull Max Depth (ft)	1.3	1.3						2.1	2.2						1.3	1.2						1.8	1.8						1.1	1.1					
Low Bank Height (ft)	1.3	1.3						2.1	2.2						1.3	1.2						1.8	1.9						1.1	1.2					
Bankfull Cross Sectional Area (ft 2)	10.7	10.7						18.2	18.2						9.9	9.9						13.0	12.6						7.2	7.2					
Bankfull Width/Depth Ratio	15.5	21.3						NA	NA						17.5	21.8						NA	NA						18.5	20.7					
Bankfull Entrenchment Ratio	7.8	6.6						NA	NA						7.6	6.8						NA	NA						8.6	8.2					
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.1						1.0	1.1					
Cross Sectional Area between end pins (ft 2)	18.6	18.6						34.1	28.0						20.9	18.6						23.6	25.9						20.3	19.9					
d50 (mm)																																			
		0	Cross S	ection	6 (Poo	ol)			(Cross S	Section	7 (Poo	l)			(Cross S	Section	8 (Riff	fle)															
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used						1													1			1				1									
Bankfull Width (ft)	8.8	10.6						9.1	11.4						10.1	10.1																			
Floodprone Width (ft)	NA	NA						NA	NA						100.0	100.0																			
Bankfull Mean Depth (ft)	1.2	1.0						1.3	1.0						0.5	0.5																			
Bankfull Max Depth (ft)	1.9	1.9						2.0	1.9						0.8	1.0																			
Low Bank Height (ft)	1.9	1.8						2.0	1.8						0.8	1.2																			
Bankfull Cross Sectional Area (ft 2)	10.7	10.7						11.6	11.6						5.2	5.2																			
Bankfull Width/Depth Ratio	NA	NA						NA	NA						19.6	19.6																			
Bankfull Entrenchment Ratio	NA	NA						NA	NA						9.9	9.9																			
Bankfull Bank Height Ratio	1.0	0.9						1.0	0.9						1.0	1.2																			
Cross Sectional Area between end pins (ft 2)	17.1	16.7						21.0	18.5						11.2	15.2																			
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values.

Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

				Та	able 1	3i. N															ters – 760 fee		s Sec	tions))										
		c	ross S	ection	1 (Riff	e)	110	jeern				1 2 (Poo		011/10	1			Section			00100	1	(Cross S	Section	1 4 (Poo	ol)		1	(ross S	ection	5 (Riffle	∋)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
	13.7	15.2						11.4	13.4						12.1							10.2	11.0						10.3	10.3					
Floodprone Width (ft)	100.0	100.0						NA	NA						100.0	100.0						NA	NA						100.0	100.0					
Bankfull Mean Depth (ft)	0.7	0.7						1.2	1.0						0.7	0.6						0.9	0.8						0.6	0.6					
Bankfull Max Depth (ft)	1.7	1.3						2.0	1.9						1.4	1.4						1.7	1.6						1.2	1.2					
Low Bank Height (ft)	1.7	1.5						2.0	1.9						1.4	1.5						1.7	1.6						1.2	1.3					
Bankfull Cross Sectional Area (ft ²)	10.2	10.2						13.9	13.9						8.3	8.3						9.1	9.1						6.4	6.4					
Bankfull Width/Depth Ratio	18.3	22.7						NA	NA						17.7	20.0						NA	NA						16.6	16.6					
Bankfull Entrenchment Ratio	7.3	6.6						NA	NA						8.2	7.8						NA	NA						9.7	9.7					
Bankfull Bank Height Ratio	1.0	1.2						1.0	1.0						1.0	1.1						1.0	1.0						1.0	1.1					
Cross Sectional Area between end pins (ft ²)	31.1	30.5						38.2	32.0						18.8	19.6						19.8	20.6						13.5	12.2					
d50 (mm)																																			
		(Cross S	ection	6 (Poc	ol)																													
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+																												
Record elevation (datum) used					1	1				1																	1								
Bankfull Width (ft)	15.9	14.4																																	
Floodprone Width (ft)	NA	NA																																	
Bankfull Mean Depth (ft)	0.8	0.9																																	
Bankfull Max Depth (ft)	1.9	1.8																																	
Low Bank Height (ft)	1.9	1.8																																	
Bankfull Cross Sectional Area (ft ²)	13.1	13.1																																	
Bankfull Width/Depth Ratio	NA	NA																																	
Bankfull Entrenchment Ratio	NA	NA																																	
Bankfull Bank Height Ratio	1.0	1.0																																	
Cross Sectional Area between end pins (ft ²)	25.0	24.6																																	
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankful datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

																						Data S			(=		0									
											rojec	t Nan	ne/Nu	mber	•		lilson	/1000	19)	Segn		Reach	: UT '	I Low	er (57	72 tee					-					
Parameter			Base	eline					M	(-1					M	Y-2					M	Y- 3					M	Y- 4					M	′- 5		
Dimension and Substrate - Riffle only		Mean				n		Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n
			11.22			2	11.8		11.1	12.8		2																								
	100		100	100		2	100	100	100	100		2																								
Bankfull Mean Depth (ft)			0.981	1.075		2	0.8	0.9	0.9	1		2																								
¹ Bankfull Max Depth (ft)				2.087		2	1.7	1.8	1.8	1.9		2																								
Bankfull Cross Sectional Area (ft ²)						2	9.4		11.1	12.8		2																								
Width/Depth Ratio						2	14	14.4	14.4	14.8		2																								
Entrenchment Ratio		8.944	8.944	9.472		2	7.5	8	8	8.5		2																								
¹ Bank Height Ratio	1	1	1	1		2	1	1.1	1.1	1.2		2																								
Profile																																				
Riffle Length (ft)	1.924	14.87	8.897	55.19	14.76	20																														
Riffle Slope (ft/ft)	0.006	0.020	0.019	0.039	0.010	20																														
Pool Length (ft)	2.416	10.68	11.19	19.43	4.772	20																														
Pool Max depth (ft)																																				
Pool Spacing (ft)	6.911	30.62	28.03	66.88	16.18	19																														
Pattern																																				
Channel Beltwidth (ft)	15		29.9	39.9																																
Radius of Curvature (ft)	15		29.9	39.9												Detter					ما من ام ما م		م منعام ا													
Rc:Bankfull width (ft/ft)																Patteri	n data w	ill not ty	pically c			ess visua shifts fro			nai data	or profi	le data	Indicate								
Meander Wavelength (ft)	59.82		84.7	119.6															-	_	_		-				-									
Meander Width Ratio	1.5		3	4																																
Additional Reach Parameters																																				
Rosgen Classification			Cb	0.4																																_
Channel Thalweg length (ft)			60																																	
Sinuosity (ft)			1.0																İ 👘												1					
Water Surface Slope (Channel) (ft/ft)			0.0																İ						1						1					
BF slope (ft/ft)													l –						Ī						Ī						1					
³ Ri% / Ru% / P% / G% / S%																	1		1																	
³ SC% / Sa% / G% / C% / B% / Be%																l											1		1			1				
³ d16 / d35 / d50 / d84 / d95 /																l																				
² % of Reach with Eroding Banks)												-				-		-			Ī	-					1					
Channel Stability or Habitat Metric																																				
Biological or Other																			l –																	

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

Parameter										Projec	t Nan					-				ach Da nent/Re			-	or (12	6 foot	ы								
		Base	line			1		R	IY-1	FIOJEC	l Nai	ie/inu	Inper	(Wall		115011/	1000	19) 、	Seyn	MY-			oppe	1 (43	olee	<u>ין</u> אי	/ A			r		MY	/ 5	
		Dase	ine					IV	11-1						-2		_			IVI T -	<u>ა</u>					IVI T	- 4					IVI T	- 5	
imension and Substrate - Riffle only Min	n Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴
	9.052				2	9	9.5		10		2					-					-	-						-						
Floodprone Width (ft) 100					2	100	100	100	100		2																							
Bankfull Mean Depth (ft) 0.50					2	0.5		0.6			2																							
¹ Bankfull Max Depth (ft) 0.83					2	1	1.2	1.2	1.4		2																							
Bankfull Cross Sectional Area (ft ²) 4.27	6 5.421	5.421	6.566		2	4.3	5.5				2																							
Width/Depth Ratio 14.0	5 15.47	15.47	16.9		2	15.2			18.8		2																							
Entrenchment Ratio 10.4					2	2.8	6.4		10		2																							
¹ Bank Height Ratio 1		1	1		2	1	1	1	1		2																							
ofile	· ·		-					<u> </u>																										
Riffle Length (ft) 12.6	63 22.14	20.55	43.08	8.919	12		1	T	1	1																								
Riffle Slope (ft/ft) 0.02								1			1																							
Pool Length (ft) 6.96								1			1																							
Pool Max depth (ft)																																		
	.4 37.44	34.84	52.16	8.468	11																													
ttern						-					-																							
Channel Beltwidth (ft) 15		29.9																																
Radius of Curvature (ft) 15		29.9	39.9																															
Rc:Bankfull width (ft/ft)															Pattern	data wi	ll not typ	pically be		ed unless				al data	or profil	e data ir	dicate							
Meander Wavelength (ft) 59.8	2	84.7	119.6																sigi	nificant sh	its from	baselli	ne											
Meander Width Ratio 1.5		3	4																															
						_																												
dditional Reach Parameters		-																																
Rosgen Classification		Cb																																
Channel Thalweg length (ft)		458																																
Sinuosity (ft)		1.0																																
Water Surface Slope (Channel) (ft/ft)		0.03																																
BF slope (ft/ft)			-				-		_	-																		-						
³ Ri% / Ru% / P% / G% / S%																																		
³ SC% / Sa% / G% / C% / B% / Be%																																		
2																																		
³ d16 / d35 / d50 / d84 / d95 /		0																																
³ d16 / d35 / d50 / d84 / d95 / ² % of Reach with Eroding Banks Channel Stability or Habitat Metric																																		

															c. Mo											0.6	~								
							ī				Projec	ct Nan	ne/Nu	mber	(Warr		lison	/1000	19)	Segn			: UT 3	LOW	er (8 <i>1</i>	3 tee									
arameter			Bas	eline					N	IY-1					MY	(-2					MY	- 3					M١	′- 4					MY	′- 5	
			1	1	1 4		-	-		-						1				1			-			1	1	1		1		1	1	1	
mension and Substrate - Riffle only					SD^4					Max			Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴
Bankfull Width (ft)								23.7				2																							
Floodprone Width (ft)						2		100				2																							
Bankfull Mean Depth (ft)					<u> </u>	2	0.7	0.9		1.2		2																							
¹ Bankfull Max Depth (ft)						2	1.4	1.8		2.1		2																							
Bankfull Cross Sectional Area (ft ²)	17	22.1	22.1	27.2		2	17	22.1	22.1	27.2		2																							
Width/Depth Ratio						2	20.3	26.8	26.8	33.3		2																							
Entrenchment Ratio	4.262	6.867	6.867	9.472		2	4.2	4.2	4.2	4.3		2																							
¹ Bank Height Ratio	1	1	1	1		2	1	1	1	1		2																							
rofile																																			
Riffle Length (ft)	16.73	35.32	33.02	64.95	13.72	15																													
Riffle Slope (ft/ft)	0.008	0.018	0.019	0.028	0.006	15		1			Î.	Î.															Î.			Î.					
Pool Length (ft)	11.32	20.36	20.28	29.23	6.49	15																													
Pool Max depth (ft)						1																													
Pool Spacing (ft)	32.17	64.03	56.97	104	18.91	15																													
attern																																			
Channel Beltwidth (ft)	23.9		47.9	63.8																															
Radius of Curvature (ft)	31.9		47.9	47.9																															
Rc:Bankfull width (ft/ft)																Patterr	n data w	ill not ty	pically b		ted unles				nal data	or profil	e data ir	ndicate							
Meander Wavelength (ft)			165.7	191.5																sig	nificant s	initts froi	m basei	ine											
Meander Width Ratio	1.5		3	4																															
dditional Reach Parameters							-																												
Rosgen Classification				e 4																															
Channel Thalweg length (ft)				60																															
Sinuosity (ft)				.1																															
Water Surface Slope (Channel) (ft/ft)			0.0	129																															
BF slope (ft/ft)							_			-	-																		1			-			
³ Ri% / Ru% / P% / G% / S%																																			
³ SC% / Sa% / G% / C% / B% / Be%																																			
³ d16 / d35 / d50 / d84 / d95 /																																			
² % of Reach with Eroding Banks				0			1																						•						
				-									1																		<u> </u>				
Channel Stability or Habitat Metric																																			
Channel Stability or Habitat Metric Biological or Other																																			

												D	-4 - 11			4d. M											05 6	- 1)								
								-				Proje	ect Na	me/Nu	Imbei	' (Warı		ilson/	1000	19) :	Segm			: UT 3	Uppe	er (19	95 te									
arameter			В	aseli	ne						MY-1					M	Y-2		-			M	(- 3					М	Y- 4					M	Y- 5	
							.					-				-		I ,			1			1 4	1				-	-		4				-
mension and Substrate - Riffle only		Mea					n					x SD			Mear	n Med	Max	SD^4	n	Min	Mean	Med	Max	SD⁴	n	Min	Mear	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴
Bankfull Width (ft								-		7 11.			4																							
Floodprone Width (ft								100		10			4																							
Bankfull Mean Depth (ft								0.5					4																							
¹ Bankfull Max Depth (ft								1	1.5	1.5	5 2.5	5	4																							
Bankfull Cross Sectional Area (ft ²	13.55	5 16.84	4 16	.2 2	21.4	3.291	4	13.6	16.2	2 16.	2 21.	4	4																							
Width/Depth Ratio	13.34	15.5	5 15.	63 1	7.38	1.739	4	11.2	17	17	46.	8	4																							
Entrenchment Ratio	5.356	6.28	6.3	84 7	7.02	0.783	4	2.8	5.5	5.5	5 10		4																			Т	T			
¹ Bank Height Ratio	0 1	1	1		1	0	4	1	1	1	1		4																			Т	T			
rofile												-																								
Riffle Length (ft	8.65	5 33.73	3 29	.5 79	9.65	18.55	34											1				1													1	
Riffle Slope (ft/ft	0.00	8 0.018	8 0.0	18 0.	.034	0.006	34										1	1				Î.			Î.		1	1	1	1	l.			1	1	
Pool Length (ft	10.0	8 19.20	6 17.	43 42	2.65	6.576	34																					1		1				1		
Pool Max depth (ft)						1																											1		
Pool Spacing (ft	33.5	8 65.36	6 61.	27 1	108	17.84	33																													
attern																																				
Channel Beltwidth (ft) 23.9			.9 6																																
Radius of Curvature (ft	31.9		47	.9 6	53.8																															
Rc:Bankfull width (ft/ft)																Patter	n data w	vill not ty	pically b		ted unle				nal data	a or prof	ile data i	indicate							
Meander Wavelength (ft				5.7 19																	sig	nificant	Shifts fro	om basel	line											
Meander Width Ratio	1.5		3	5	4																															
	_							_																												
dditional Reach Parameters																																				
Rosgen Classification	n			Ce 4																																
Channel Thalweg length (ft)			2195																												_				
Sinuosity (ft)			1.1																																
Water Surface Slope (Channel) (ft/ft)			0.013																																
BF slope (ft/ft)		-					_					_	_	-		-												-			—			-	
³ Ri% / Ru% / P% / G% / S%	ò																																			
³ SC% / Sa% / G% / C% / B% / Be%	, D																																			
³ d16 / d35 / d50 / d84 / d95	/																																			
² % of Reach with Eroding Bank				0														•																	•	
Channel Stability or Habitat Metri				-																												+				
Biological or Othe	r																															+				
haded cells indicate that these will typically not be	e filled in	٦.																																		
= The distributions for these parameters can incl			from I	ooth th	ne cros	ss-sect	ion mea	sureme	ents and	the lor	gitudina	l profile.																								
= Proportion of reach exhibiting banks that are e												•																								
= Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand,											ive																									

ameter		Table 14e. Monitoring Data - Stream Reach Data Summary Project Name/Number (Warren Wilson/100019) Segment/Reach: UT 4															279 f	not)																		
			D				T				PI	oject	Name	/num				SON/ I	00018	<i>i</i>) 3			ach: C	JI 4 (2/010	et)					T					
arameter	Baseline						MY-1						MY-2						MY- 3						MY- 4							MY- 5				
imension and Substrate - Riffle only	Min	Moon	Mod	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Moon	Med	Max	SD4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	
Bankfull Width (ft)	13.97	13.97	13.97	13.97	30	1				20.5	30	1	IVIIII	wear	Meu	IVIAA	30		IVIIII	wear	weu	IVIAA	30	- 11	IVIIII	Wear	Meu	IVIAN	50		IVIIII	Wearr	Meu	IVIAN	50	
Floodprone Width (ft)						1		100				1	-																							
Bankfull Mean Depth (ft)						1	0.6			0.6		1																								
¹ Bankfull Max Depth (ft)						1	1.6					1	1																							
Bankfull Cross Sectional Area (ft ²)	13.3	13.3	13.3	13.3		1		13.3				1																								
Width/Depth Ratio	14.67	14.67	14.67	14.67		1				31.6		1																								
Entrenchment Ratio						1	4.9			4.9		1																								
	1		1	1		1	1	1	1	1		1	-																							
9	-	<u> </u>		<u> </u>		<u> </u>	<u> </u>	1 1	<u> </u>	1 '		<u> </u>																								
Profile Riffle Lenath (ft)	10.42	25.15	10.31	63.04	10.0	6	1	T	r	1	1	1																								
Riffle Slope (ft/ft)								-	-																											
Pool Length (ft)								+	+	-																										
9 17	12.04	14.90	14.70	15.24	2.207	0	-	-	-				-								-															
Pool Max depth (ft) Pool Spacing (ft)	28 34	38	42 04	45 35	8 1 9 9	6		+	+	-																										
attern	20.04	00	42.04	40.00	0.100	Ŭ		_	_																											
Channel Beltwidth (ft)	27.9	1	27.9	37.3	1	T	1	T	T	1	1	1																								
Radius of Curvature (ft)				37.3			-	-	-									data will not typically be collected unless visual data, dimensional data or profile data indicate																		
Rc:Bankfull width (ft/ft)				0.10				-	-		1					Patterr	n data w																			
Meander Wavelength (ft)	55.9		79.2	111.8				-	-		1								. ,		nificant :					•						1				
Meander Wavelength (tr)	1.5		3	4				-																												
			-	-																																
dditional Reach Parameters																																				
Rosgen Classification			0	24			1																													
Channel Thalweg length (ft)			-	292																																
Sinuosity (ft)				.05																																
Water Surface Slope (Channel) (ft/ft))235																																
BF slope (ft/ft)																																				
³ Ri% / Ru% / P% / G% / S%				1	1			T	1		1			I			1									1						T				
³ SC% / Sa% / G% / C% / B% / Be%						<u> </u>								1																-						
				-		-	-	-	-																											
³ d16 / d35 / d50 / d84 / d95 /							-																													
² % of Reach with Eroding Banks				0																																
Channel Stability or Habitat Metric																																				
Biological or Other																																				
											Dre	ioct b			4f. Mo										0244	(act)										
---	----------------------	---------	----------	-----------	----------	---------	----------	-----------	----------	------------	-----------------	--------	-------	------	--------	----------	----------	------------	-----------	------	-------------------------	------	--------	--------	----------	----------	----------	---------	-----------------	---	-------	------	-----	------	--------	
							1				Pro	Ject N	vame/	Num	ber (W		1 WIIS	on/it	10019) 30	-		icn: U	1 2 (1	024	eet)								_		
arameter			Bas	seline					N	IY-1					M	(-2					MY	′- 3					M	(- 4					MY	- 5		
in an in and Cubatrata Diffic ante	A dire	Maar	Mad	Max	0.04	1	Min	L A a a a	Mad	LA	SD ⁴		Min		Med	Mari	SD^4		N.A.ive		Med	Mair	0.04		Min	Mean	Mad		SD ⁴	1	Min	Man	Mad	Mari	SD^4	
imension and Substrate - Riffle only Bankfull Width (f						n 3		18.3		Max 21	5D	n 3	IVIIN	wean	ivied	Max	5D	n	IVIIN	wean	ivied	Max	50	n	IVIIN	Mean	ivied	Max	5D	n	IVIIN	Mean	Med	wax	5D	
Floodprone Width (1	() 7.200	10.52	100	100	'	3		10.5				3																								
Bankfull Mean Depth (1						3	0.3			0.8		3														-										
¹ Bankfull Max Depth (3	1.3			1.4		3																								
Bankfull Cross Sectional Area (ft		7.9		10.4		3	7.3			10.4		3																								
Width/Depth Rat						3	14			60.4		3																								
Entrenchment Rat			1	1		3	1.9		2.2	-		3																								
¹ Bank Height Rat	o 1	1	1	1		3	1	0.9	0.9	1		3																								
rofile		-	-		-		-		_			-																								
Riffle Length (i																																				
Riffle Slope (ft/																																				
Pool Length (i	t) 5.509	9 12.12	12.54	4 18.16	3.017	30																														
Pool Max depth (t)																																			
Pool Spacing (t) 24.0 ⁻	1 34.63	32.47	7 50.16	6.837	30																														
attern		-			-	-	-	-																												
Channel Beltwidth (i				32.8																											ļ					
Radius of Curvature (7		32.8	47.9												D	1.1.									c					ļ					
Rc:Bankfull width (ft/	7							_								Patterr	i data w	III not ty	pically b		ted unles nificant s				nai data	or proti	e data i	ndicate								
Meander Wavelength (f				98.37				_												Jig																
Meander Width Rat	o 1.5		3	4																																
	_																																			
dditional Reach Parameters	-						r																													
Rosgen Classificatio				Ce 4			-																													
Channel Thalweg length (i	/			076			-																													
Sinuosity (i				1.05			-																													
Water Surface Slope (Channel) (ft/				0221			-																													
BF slope (ft/l					1		_			1	1		_	1						1						-	1	1	1			1				
³ Ri% / Ru% / P% / G% / S								_																												
³ SC% / Sa% / G% / C% / B% / Be	%																																			
³ d16 / d35 / d50 / d84 / d95	1																																			
² % of Reach with Eroding Banl	s			0																																
Channel Stability or Habitat Metr				-																																
Biological or Oth																																				
haded cells indicate that these will typically not b		۱.																	-																	
= The distributions for these parameters can inc			from bot	th the cr	oss-sect	ion mea	sureme	nts and	the long	itudinal p	orofile.																									
= Proportion of reach exhibiting banks that are e									0																											
= Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand									subpay	e																										

964 4 10.6 13 0 4 100 100 166 4 0.5 0.6 198 4 0.9 1.7 .26 4 5.6 7.2 078 4 19.9 21 852 4 2 7.5	00 100 1 0.6 0.6 0 1.1 1.1 1 7.2 7.2 8 1.6 21.6 2 7.5 7.5 9			Ame/Nui Min Mea Anno Anno Anno Anno Anno Anno Anno Ann	M١	′-2	SD ⁴ n		ł	MY- Med I 	3	•		Mean Mean Mean Mean Mean Mean Mean Mean	MY-4	ax SD	4 n 	Min Min 	Mean	MY- Med 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		SD ⁴
964 4 10.6 13 0 4 100 100 166 4 0.5 0.6 198 4 0.9 1.7 198 4 0.9 1.7 2.26 4 5.6 7.2 078 4 19.9 21 852 4 2 7.5 0 4 1 1 382 47 009 36 499 46 9 46	ean Med M 13 13 1 00 100 1 0.6 0.6 0 1.1 1.1 1 7.2 7.2 8 1.6 21.6 2 7.5 7.5 9	Max SD ⁴ 3.6 100 1.3 8.1 27.7 9.4	4 4 4 4 4 4 4 4	Min Mer - - <th></th> <th></th> <th>SD⁴ n</th> <th>Min Min </th> <th>Mean Mean Mean Mean Mean Mean Mean Mean</th> <th></th> <th></th> <th>n </th> <th>Min </th> <th>Mean M </th> <th></th> <th>ax SD </th> <th>4 n</th> <th>Min Min </th> <th>Mean</th> <th></th> <th></th> <th></th>			SD ⁴ n	Min Min 	Mean Mean Mean Mean Mean Mean Mean Mean			n 	Min	Mean M 		ax SD 	4 n	Min Min 	Mean			
964 4 10.6 13 0 4 100 100 166 4 0.5 0.6 198 4 0.9 1.7 198 4 0.9 1.7 2.26 4 5.6 7.2 078 4 19.9 21 852 4 2 7.5 0 4 1 1 382 47 009 36 499 46 9 46	13 13 1 00 100 1 0.6 0.6 0 1.1 1.1 1 7.2 7.2 8 1.6 21.6 2 7.5 7.5 5	3.6 100 0.6 1.3 8.1 27.7 9.4	4 4 4 4 4 4 4 4	Min Mean - - <th>an Med </th> <th>Max 5</th> <th>SD⁴ n</th> <th>Min</th> <th>Mean Mean Mean Mean Mean Mean Mean Mean</th> <th>Med I - -</th> <th>Aax SD⁴</th> <th>n </th> <th>Min </th> <th>Mean M </th> <th>led Ma </th> <th>ax SD</th> <th>4 N</th> <th>Min </th> <th>Mean</th> <th>Med</th> <th>Max S</th> <th></th>	an Med 	Max 5	SD ⁴ n	Min	Mean Mean Mean Mean Mean Mean Mean Mean	Med I - -	Aax SD ⁴	n 	Min	Mean M 	led Ma 	ax SD	4 N	Min 	Mean	Med	Max S	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 100 1 0.6 0.6 0 1.1 1.1 1 7.2 7.2 8 1.6 21.6 2 7.5 7.5 9	100 0.6 1.3 8.1 27.7 9.4	4 4 4 4 4 4 4																			
166 4 0.5 0.6 198 4 0.9 1.7 .26 4 5.6 7.2 078 4 19.9 21 852 4 2 7.5 0 4 1 1 382 47 009 36 499 46 9 46	0.6 0.6 0 1.1 1.1 1 7.2 7.2 8 1.6 21.6 2 7.5 7.5 9	0.6 1.3 8.1 27.7 9.4	4 4 4 4 4																			
198 4 0.9 1.7 .26 4 5.6 7.2 078 4 19.9 21. 852 4 2 7.5 0 4 1 1 382 47 009 36 499 46 9	1.1 1.1 1 7.2 7.2 8 1.6 21.6 2 7.5 7.5 9	1.3 8.1 27.7 9.4	4 4 4 4																			
.26 4 5.6 7.2 0078 4 19.9 21. 852 4 2 7.5 0 4 1 1 382 47	7.27.27.281.621.627.57.59	8.1 27.7 9.4	4 4 4																			
.26 4 5.6 7.2 0078 4 19.9 21. 852 4 2 7.5 0 4 1 1 382 47	1.6 21.6 2 7.5 7.5 9	9.4	4 4																			
852 4 2 7.5 0 4 1 1 382 47 1 1 009 36 1 1 499 46 1 1	7.5 7.5 9	9.4	4																			
852 4 2 7.5 0 4 1 1 382 47 1 1 009 36 1 1 499 46 1 1																						
0 4 1 1 382 47			4																			
009 36 499 46																						
009 36 499 46																						
009 36 499 46																						
																		E				
																		\vdash				
																		-				
															1					1		
																			/ · · · · · · · · · · · · · · · · · · ·			
						Pattern d	ata will not	t typically b		ted unless			nal data c	r profile d	ata indica	te						
									sig	nificant shi	ts from bas	eline										
F																		4				
								_										4				
								_										4				
								_														
	- I I					<u> </u>		_	-								_		, 			
		_							_							_		4	$ \longrightarrow $			_
																		T				
																		Т				
		ction measurements and the longitud	ction measurements and the longitudinal profile.							Image: Constraint of the longitudinal profile.	tion measurements and the longitudinal profile.	tion measurements and the longitudinal profile.	Image: Control of the longitudinal profile. Image: Control of the longitudinal profile. Image: Control of the longitudinal profile.									

											Dre	ioot N			h. Mo										0114	oot)									
							-				Pro	ject r	vame/	NUM	ber (W		1 WIIS	on/10	0019) 56	_		cn: U	17(1	844 T	eet)					-			_	
arameter		_	Bas	eline	_	_		_	<u> </u>	/IY-1	_	_		_	M	(-2	_			_	MY	′- 3	_			_	M١	- 4	_	_		_	MY	- 5	_
imension and Substrate - Riffle only	Min	Mean	Mod	Max	SD ⁴	n	Min	Moor	Mec	I Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Moon	Med	Max	SD4	n	Min	Mean	Mod	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4
Bankfull Width (ft)										5 15.1	30	4	IVIIII	wear	wieu	IVIAA	30	- 11	IVIIII	Wear	Meu	IVIAA	50		IVIIII	wear	ivieu	IVIAA	50		IVIIII	Weall	weu	IVIAA	30
Floodprone Width (ft)						4		10.0				4																							
Bankfull Mean Depth (ft)							0.5			0.7		4																							
¹ Bankfull Max Depth (ft)							1	1.2				4																							
Bankfull Cross Sectional Area (ft ²)							5.2					4																							
Width/Depth Ratio	15 52	0.20	17.05	10.00	2.317	4	19.6			21.8		4																							
Entrenchment Ratio							0.7	1.5		21.0		4																							
				1	-	1	-	-	_																										
¹ Bank Height Ratio	1	1	1	1	0	4	1	1	1	1.2		4																							
rofile	7 705	07.4	04.04	04.00	45.50	1 44	_																									ļ			
Riffle Length (ft)								_	_	_				<u> </u>							<u> </u>										<u> </u>	ļ			
Riffle Slope (ft/ft)								_	_	_				<u> </u>							<u> </u>										<u> </u>	ļ			
Pool Length (ft)	4.044	11.28	11.73	15.84	2.729	44		_	_	_				<u> </u>							<u> </u>										<u> </u>	ļ			
Pool Max depth (ft)	00.04	44.40	40.07	107.0	16.04	40		_	_	_				<u> </u>							<u> </u>										<u> </u>	ļ			
Pool Spacing (ft)	22.31	44.19	40.07	107.9	16.31	43																										<u> </u>			
attern	27.0		27.0	37.3	.	-	-	-	-	-	-		-																						
Channel Beltwidth (ft)									_	_	_		-																						
Radius of Curvature (ft) Rc:Bankfull width (ft/ft)	10.0		27.9	37.3				-	-	-	-					Pattern	n data w	ill not tv	nically h	e collec	ted unles	se vieual	data di	mensior	al data	or profil	e data ir	dicate							
	55.0		70.2	111.8				-	_	-					<u> </u>	1 atten	i data w	in not ty	pically b		nificant s				iai data	or prom	c data ii	laicate			<u> </u>				
Meander Wavelength (ft)	1.5		79.2 3	4				-	_	-										ī	, 										<u> </u>				
Meander Width Ratio	1.5		3	4																															
dditional Reach Parameters	-						-																												
Rosgen Classification	r –		Eł	b 4			T																												
Channel Thalweg length (ft)				973																															
Sinuositv (ft)				.07																															
Water Surface Slope (Channel) (ft/ft))103																															
BF slope (ft/ft)																																			
³ Ri% / Ru% / P% / G% / S%				r	1			T	T	T	T			I			ſ			1	T					1	I					T			
								-		-							<u> </u>																		
³ SC% / Sa% / G% / C% / B% / Be%								-			-		———	ļ							 											I			
³ d16 / d35 / d50 / d84 / d95 /																																			
² % of Reach with Eroding Banks				0																															
Channel Stability or Habitat Metric Biological or Other																																			

											D -	oloot			4i. Mo										760 4	oot)									
arameter			D -								Pr	oject	Name	/num	ber (V	varre Y-2		son/1		<i>i)</i> 30	_		acn: (JI 8 (1001	eet)		Y- 4			1		843		
arameter			ва	seline						MY-1					IMI	Y-2					IVI Y	(- 3					IVI	Y-4					IVI Y	′- 5	
imension and Substrate - Riffle only	Min	Mean	Med	d Max	SD	4 n	Mir	Mea	n Me	d Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴
Bankfull Width (fr) 10.34	12.04	12.1	3 13.6	6	3	10.3		12.9			3												1											
Floodprone Width (fi) 100	100	100) 100		3	100	100	100) 100		3		1												1	Î		1				1		
Bankfull Mean Depth (f	t) 0.624	0.684	0.68	4 0.74	5	3	0.6	0.6	0.6	0.7		3																							
¹ Bankfull Max Depth (f	t) 1.197	1.433	1.42	6 1.67	7	3	1.2	1.3	1.3	1.4		3					1																		
Bankfull Cross Sectional Area (ft						3	6.4	8.3	8.3	10.2		3		1			1				1		1			1		1					1		
Width/Depth Rati	, 16.57	17.55	17.7	4 18.3	4	3	16.					3																							
Entrenchment Rati						3	1.6	1.9	1.9	2.2		3												1			1								
¹ Bank Height Rati			1	-		3	1.1	_			_	3																							
rofile	<u> </u>	<u> </u>		<u> </u>		<u> </u>		1		<u> </u>																									
Riffle Length (f	t) 7.812	2 15.86	13.7	7 32.4	4 7.15	7 27			1			1																							
Riffle Slope (ft/f	t) 0.000	0.010	0.01	0 0.02	3 0.00	6 27																													
Pool Length (f	t) 6.84	12.15	12.4	2 19.8	7 2.56	9 27					1								1																
Pool Max depth (f	t)										1								1																
Pool Spacing (f	() 24.07	32.15	30.6	2 48.1	5 6.85	5 26					1													Î.		l.	1		1						
attern																																			
Channel Beltwidth (f	t) 10.65		21.3	3 28.4	ŀ																														
Radius of Curvature (f) 14.2		21.3	3 28.4	ŀ																														
Rc:Bankfull width (ft/f	1															Patterr	n data w	vill not ty	pically b			ss visua			onal data	a or prof	ile data	indicate							
Meander Wavelength (f			64	85.2	2															sig	nificant	shifts fro	m basel	line											
Meander Width Rati	o 1.5		3	4																															
	_						_																												
dditional Reach Parameters	-			-			-																												
Rosgen Classificatio				C 4																															
Channel Thalweg length (f	/			874																															
Sinuosity (f	7			1.15																															
Water Surface Slope (Channel) (ft/ft				.0063			_																												
BF slope (ft/ft		-									1		_	r	1		1			-	1	1	1			-	-	-	-		_	-	r		1 1
³ Ri% / Ru% / P% / G% / S%																																			
³ SC% / Sa% / G% / C% / B% / Be%	6																																		
³ d16 / d35 / d50 / d84 / d95	/																																		
² % of Reach with Eroding Bank	S			0																															
Channel Stability or Habitat Metri																																			
Biological or Othe																																			
haded cells indicate that these will typically not b = The distributions for these parameters can incl	e filled ir		from he	ath tha a		otion mo		anto ond	the les	منزر بطنعهما	nrofilo																								
= Proportion of reach exhibiting banks that are e										gituuliidi	prome.																								
= Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand																																			

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS -1, Riffle
Feature	Riffle
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	2571.5
4.1	2570.6
6.1	2570.0
7.4	2569.2
8.2	2568.2
8.9	2568.0
9.8	2568.0
10.3	2568.0
11.1	2567.9
11.4	2568.0
11.8	2568.4
12.3	2568.6
13.4	2568.7
14.6	2569.0
16.1	2569.4
17.7	2569.8
19.4	2569.8
22.2	2570.2

SUMMARY DATA	
Bankfull Elevation:	2569.9
Bankfull Cross-Sectional Area:	12.8
Bankfull Width:	13.4
Flood Prone Area Elevation:	2571.8
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.9
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.0
W / D Ratio:	14.1
Entrenchment Ratio:	7.5
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS - 2, Pool
Feature	Pool
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2571.0
3.5	2570.6
5.4	2570.4
6.3	2570.2
7.8	2568.5
8.7	2568.4
9.7	2568.3
10.3	2568.1
11.1	2568.6
11.7	2568.6
12.2	2569.0
12.7	2569.9
14.0	2569.9
15.0	2570.2
17.2	2570.4
20.0	2570.4
13.2	2569.7
13.8	2569.9
15.0	2570.0
15.9	2570.3
17.0	2570.4
18.0	2570.3
20.1	2570.3

SUMMARY DATA	
Bankfull Elevation:	2570.0
Bankfull Cross-Sectional Area:	8.3
Bankfull Width:	7.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

A •.	***
Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2575.9
4.6	2575.7
6.5 7.5	2575.3
7.5	2575.0
8.2	2574.7
8.9	2574.4
9.7	2574.2
10.4	2574.1
11.2	2574.1
12.0	2574.4
12.6	2574.8
13.0	2575.1
13.8	2575.2
14.5	2575.6
15.7	2575.8
17.7	2576.4
18.9	2576.5
20.3	2576.6

SUMMARY DATA	
Bankfull Elevation:	2575.6
Bankfull Cross-Sectional Area:	7.4
Bankfull Width:	9.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.5
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS -4, Riffle
Feature	Riffle
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2576.3
3.2	2576.0
4.7	2575.5
5.7	2575.3
6.3	2575.2
6.8	2574.9
7.5	2574.3
8.3	2574.5
9.3	2574.4
9.9	2574.6
10.5	2575.0
11.4	2575.3
13.1	2575.9
15.1	2576.2
17.4	2576.5

SUMMARY DATA	
Bankfull Elevation:	2576.1
Bankfull Cross-Sectional Area:	9.4
Bankfull Width:	11.8
Flood Prone Area Elevation:	2577.8
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.7
Low Bank Height:	2.0
Mean Depth at Bankfull:	0.8
W / D Ratio:	14.8
Entrenchment Ratio:	8.5
Bank Height Ratio:	1.2

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS - 5, Riffle
Feature	Riffle
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	2599.0
1.5	2598.8
3.1	2598.7
4.6	2598.3
5.4	2598.2
5.9	2597.9
6.4	2597.7
7.4	2597.4
8.3	2597.4
8.8	2597.5
9.5	2597.8
10.0	2597.6
10.7	2597.9
11.4	2598.1
12.4	2598.2
13.5	2598.4
14.7	2598.3
16.3	2598.5

Bankfull Elevation:	2598.4
Bankfull Cross-Sectional Area:	4.3
Bankfull Width:	9.0
Flood Prone Area Elevation:	2599.4
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.0
Low Bank Height:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	18.9
Entrenchment Ratio:	11.1
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS - 6, Pool
Feature	Pool
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2599.5
2.1	2599.0
4.1	2598.8
5.2	2598.5
6.0	2598.1
6.7	2597.6
7.5	2597.3
8.4	2597.2
8.9	2597.3
9.3	2597.4
9.7	2597.8
10.1	2598.3
10.8	2598.2
12.4	2598.4
14.5	2598.3
15.9	2598.5

SUMMARY DATA	
Bankfull Elevation:	2598.4
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	9.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS - 7, Pool
Feature	Pool
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.3	2605.2
0.0	2605.2
3.1	2604.9
5.7	2604.7
6.6	2604.4
7.2	2604.0
7.9	2603.4
8.4	2603.0
8.5	2603.0
9.1	2603.2
9.9	2603.1
10.3	2603.2
11.0	2603.2
11.2	2603.4
11.9	2604.0
12.6	2604.5
14.1	2604.8
15.8	2604.9
18.1	2605.0
20.5	2605.2

SUMMARY DATA	
Bankfull Elevation:	2604.9
Bankfull Cross-Sectional Area:	9.0
Bankfull Width:	11.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.8
Low Bank Height:	1.8
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 1, XS - 8, Riffle
Feature	Riffle
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2606.1
2.3	2606.3
3.5	2606.0
5.1	2605.5
6.0	2605.1
6.5	2605.0
7.2	2604.6
7.5	2604.5
8.1	2604.5
8.7	2604.5
9.5	2604.8
10.0	2605.1
11.3	2605.3
12.7	2605.7
14.5	2605.9
16.3	2605.9
18.0	2606.1

SUMMARY DATA	
Bankfull Elevation:	2605.9
Bankfull Cross-Sectional Area:	6.6
Bankfull Width:	10.0
Flood Prone Area Elevation:	2607.3
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	15.2
Entrenchment Ratio:	10.0
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 1, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2550.3
5.1	2549.9
9.1	2549.2
10.6	2549.0
11.6	2548.6
12.5	2548.1
13.3	2548.2
14.3	2548.0
15.4	2548.0
16.4	2547.8
17.3	2547.8
18.5	2547.8
19.7	2548.0
20.1	2548.1
21.4	2548.3
22.5	2548.3
23.5	2548.5
24.0	2548.5
25.4	2548.9
27.1	2549.4
30.7	2549.7
35.8	2549.7
37.9	2549.8

SUMMARY DATA	
Bankfull Elevation:	2549.8
Bankfull Cross-Sectional Area:	27.2
Bankfull Width:	31.6
Flood Prone Area Elevation:	2551.8
Flood Prone Width:	100.0
Max Depth at Bankfull:	2.0
Low Bank Height:	2.0
Mean Depth at Bankfull:	0.9
W / D Ratio:	36.7
Entrenchment Ratio:	3.2
Bank Height Ratio:	1.0

C •4	XX7 XX7'1
Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 2, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2550.3
5.7	2550.1
8.9	2549.8
10.6	2549.5
11.8	2549.1
13.1	2548.3
15.0	2548.1
16.6	2547.3
17.6	2547.2
18.5	2547.0
19.1	2546.9
19.8	2547.6
20.7	2548.0
21.3	2549.7
22.8	2550.2
24.9	2550.6
29.7	2550.7
33.0	2550.5

SUMMARY DATA	
Bankfull Elevation:	2549.6
Bankfull Cross-Sectional Area:	16.7
Bankfull Width:	11.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.7
Low Bank Height:	2.6
Mean Depth at Bankfull:	1.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT3, XS - 3, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2558.6
3.7	2558.2
5.2	2557.8
6.6	2557.0
7.3	2556.1
8.7	2555.6
9.9	2555.6
11.2	2555.6
12.5	2555.9
13.8	2556.3
15.1	2556.5
15.4	2556.5
16.4	2556.9
17.7	2557.2
19.4	2557.5
21.4	2557.9
27.0	2557.8

SUMMARY DATA	
Bankfull Elevation:	2557.9
Bankfull Cross-Sectional Area:	21.3
Bankfull Width:	21.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.3
Low Bank Height:	2.3
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 4, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2558.9
6.2	2558.2
7.0	2557.9
8.0	2557.6
9.1	2557.4
9.9	2557.2
11.0	2557.0
12.2	2556.9
13.8	2556.7
15.4	2556.8
16.9	2556.9
18.9	2557.0
20.1	2557.2
21.1	2557.4
22.1	2557.6
23.9	2558.1
24.5	2558.1
27.5	2558.2
29.9	2558.2

SUMMARY DATA	
Bankfull Elevation:	2558.2
Bankfull Cross-Sectional Area:	17.0
Bankfull Width:	23.8
Flood Prone Area Elevation:	2559.6
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	33.3
Entrenchment Ratio:	4.2
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 5, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	2602.8
5.2	2602.3
7.8	2602.1
10.5	2601.6
12.6	2601.0
14.2	2600.3
14.8	2599.4
16.5	2598.8
17.6	2598.9
19.0	2598.9
20.0	2599.3
21.3	2599.5
21.7	2599.7
22.7	2600.4
23.6	2600.6
25.1	2601.1
26.6	2601.4
28.0	2601.5
30.7	2601.6
36.0	2601.5
39.6	2601.6

SUMMARY DATA	
Bankfull Elevation:	2601.2
Bankfull Cross-Sectional Area:	19.1
Bankfull Width:	13.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.4
Low Bank Height:	2.3
Mean Depth at Bankfull:	1.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 6, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	2603.0
4.5	2603.1
8.3	2602.9
10.2	2602.7
11.9	2602.3
13.6	2601.8
14.9	2601.4
15.9	2601.2
16.5	2601.1
17.6	2601.0
18.9	2600.9
20.3	2601.0
21.6	2601.2
22.6	2601.4
23.3	2601.6
24.5	2601.7
25.5	2602.1
27.1	2602.6
28.4	2602.84
32.7	2603.11
37.7	2603.17

SUMMARY DATA	
Bankfull Elevation:	2602.9
Bankfull Cross-Sectional Area:	21.4
Bankfull Width:	19.7
Flood Prone Area Elevation:	2604.7
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.9
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.1
W / D Ratio:	18.1
Entrenchment Ratio:	5.1
Bank Height Ratio:	1.0

~	
Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 7, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2610.0
4.4	2610.0
7.8	2609.5
9.6	2609.2
11.3	2608.8
12.1	2608.4
12.7	2608.3
13.9	2608.5
15.0	2608.3
15.6	2608.3
16.5	2608.4
17.7	2608.4
18.4	2608.9
19.8	2609.1
21.1	2609.3
22.5	2609.7
27.2	2609.7
31.3	2609.3

SUMMARY DATA	
Bankfull Elevation:	2609.7
Bankfull Cross-Sectional Area:	13.6
Bankfull Width:	24.8
Flood Prone Area Elevation:	2611.1
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.5
W / D Ratio:	45.4
Entrenchment Ratio:	4.0
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 8, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2611.8
6.4	2612.1
11.3	2611.8
13.7	2611.1
15.2	2610.7
15.9	2609.0
17.7	2608.7
19.0	2608.6
19.8	2608.7
20.7	2609.0
21.6	2609.3
22.3	2609.9
23.0	2610.2
24.5	2610.6
26.0	2610.8
27.9	2611.3
29.7	2611.5
35.4	2611.6
40.1	2611.5

SUMMARY DATA	
Bankfull Elevation:	2611.3
Bankfull Cross-Sectional Area:	20.8
Bankfull Width:	14.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.7
Low Bank Height:	2.7
Mean Depth at Bankfull:	1.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 9, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2617.1
6.1	2617.0
10.6	2616.7
12.8	2616.2
13.9	2615.6
14.9	2615.7
17.0	2615.6
18.3	2615.6
19.3	2615.5
19.9	2615.5
21.1	2615.4
21.9	2615.8
23.2	2616.0
24.2	2616.4
26.1	2616.9
30.3	2616.8
34.0	2616.8
35.9	2616.9

SUMMARY DATA	
Bankfull Elevation:	2616.9
Bankfull Cross-Sectional Area:	16.4
Bankfull Width:	27.7
Flood Prone Area Elevation:	2618.4
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.5
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.6
W / D Ratio:	46.8
Entrenchment Ratio:	3.6
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 10, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	2617.7
5.4	2617.5
8.3	2617.0
9.8	2616.7
11.3	2616.4
12.2	2615.8
13.2	2615.5
14.0	2615.0
14.5	2614.6
15.3	2614.6
15.7	2614.6
16.5	2614.8
16.5	2614.8
17.0	2614.9
17.3	2616.5
18.4	2616.7
20.6	2617.1
22.5	2617.3
25.2	2617.3

SUMMARY DATA	
Bankfull Elevation:	2617.3
Bankfull Cross-Sectional Area:	16.7
Bankfull Width:	15.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.7
Low Bank Height:	2.7
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

a.,	XX XX XX XX
Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 11, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.6	2623.9
6.7	2623.0
10.3	2622.5
12.1	2621.8
12.5	2621.3
13.0	2620.5
14.2	2620.5
14.9	2620.2
16.0	2620.5
17.1	2620.8
17.9	2621.0
18.5	2621.2
19.2	2621.2
20.3	2621.6
21.7	2622.0
23.8	2622.4
26.4	2623.1
30.5	2623.4
33.7	2623.6

SUMMARY DATA	
Bankfull Elevation:	2623.2
Bankfull Cross-Sectional Area:	28.8
Bankfull Width:	22.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.0
Low Bank Height:	2.9
Mean Depth at Bankfull:	1.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 3, XS - 12, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	2623.6
4.7	2623.4
7.3	2623.1
8.7	2622.7
9.9	2622.1
11.0	2621.8
11.7	2621.5
12.5	2621.4
13.3	2621.2
14.1	2620.8
14.8	2620.5
15.3	2620.6
15.9	2620.7
16.9	2621.0
17.1	2621.1
18.1	2622.3
19.9	2622.8
22.2	2623.3
26.2	2623.7
29.4	2624.0

SUMMARY DATA	
Bankfull Elevation:	2622.9
Bankfull Cross-Sectional Area:	16.0
Bankfull Width:	13.4
Flood Prone Area Elevation:	2625.4
Flood Prone Width:	100.0
Max Depth at Bankfull:	2.5
Low Bank Height:	2.5
Mean Depth at Bankfull:	1.2
W / D Ratio:	11.2
Entrenchment Ratio:	7.5
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 4, XS - 1, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2586.0
5.1	2585.8
9.2	2585.5
11.3	2585.1
12.5	2584.8
13.5	2584.0
14.6	2583.7
15.7	2583.6
16.7	2583.7
18.2	2583.7
18.8	2584.3
19.7	2585.1
20.8	2585.5
22.6	2585.9
25.9	2585.7
28.7	2585.6

SUMMARY DATA	
Bankfull Elevation:	2585.5
Bankfull Cross-Sectional Area:	11.8
Bankfull Width:	11.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 4, XS - 2, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	2586.9
4.4	2587.0
7.2	2586.9
9.6	2586.4
11.5	2585.8
12.3	2585.5
13.1	2585.3
14.3	2585.1
15.4	2585.1
16.8	2585.3
17.6	2585.3
18.9	2585.6
20.5	2586.3
21.8	2586.7
24.9	2586.7
28.7	2586.6

SUMMARY DATA	
Bankfull Elevation:	2586.7
Bankfull Cross-Sectional Area:	13.3
Bankfull Width:	20.5
Flood Prone Area Elevation:	2588.3
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.6
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.6
W / D Ratio:	31.6
Entrenchment Ratio:	4.9
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 5, XS - 1, Pool
Feature	Pool
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	514.4
4.1	514.5
5.7	514.0
5.7 7.3	514.1
8.2	513.5
8.9	513.0
9.4	511.9
10.2	511.6
11.2	511.5
12.7	511.5
13.3	511.6
14.1	511.6
14.6	512.9
15.2	513.4
16.7	514.0
18.2	514.2
20.4	514.1
22.4	514.4

SUMMARY DATA	
Bankfull Elevation:	514.1
Bankfull Cross-Sectional Area:	15.3
Bankfull Width:	11.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.6
Low Bank Height:	2.6
Mean Depth at Bankfull:	1.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 5, XS - 2, Riffle
Feature	Riffle
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	514.7
3.4	514.6
5.5	514.4
6.7	514.0
7.4	513.8
7.9	513.2
9.0	513.0
9.9	513.0
11.0	513.0
11.6	513.0
12.2	513.0
12.5	513.3
13.4	513.6
14.2	513.9
14.9	514.3
16.4	514.3
18.1	514.5
19.9	514.6

SUMMARY DATA	
Bankfull Elevation:	514.3
Bankfull Cross-Sectional Area:	7.9
Bankfull Width:	10.5
Flood Prone Area Elevation:	515.6
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	14.0
Entrenchment Ratio:	9.5
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 5, XS - 3, Pool
Feature	Pool
Date:	10/19/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	520.8
4.2	520.7
6.8	520.3
7.5	520.1
8.0	519.1
8.7	519.2
9.8	519.1
10.2	518.9
11.2	519.1
11.8	519.1
12.4	519.8
13.0	520.1
13.9	520.4
15.4	520.7
17.4	520.6
20.1	520.7

SUMMARY DATA	
Bankfull Elevation:	520.5
Bankfull Cross-Sectional Area:	7.4
Bankfull Width:	9.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.9

~	
Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 5, XS - 4, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	521.3
4.2	521.4
7.8	521.1
8.8	520.8
9.4	520.7
10.1	520.3
10.7	520.1
11.1	520.2
11.9	520.3
12.4	520.4
12.8	520.8
13.2	521.0
14.6	521.1
15.5	521.3
18.2	521.4
21.0	521.4

SUMMARY DATA	
Bankfull Elevation:	521.5
Bankfull Cross-Sectional Area:	7.3
Bankfull Width:	21.0
Flood Prone Area Elevation:	522.9
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.3
W / D Ratio:	60.5
Entrenchment Ratio:	4.8
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 5, XS - 5, Pool
Feature	Pool
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	531.1
3.4	530.8
6.1	530.6
8.3	530.5
9.0	529.9
9.8	528.6
11.2	528.5
12.2	528.8
13.3	528.8
13.7	529.2
14.2	529.8
14.7	530.1
16.4	530.3
18.0	530.7
20.5	530.9
22.7	531.2

SUMMARY DATA	
Bankfull Elevation:	530.4
Bankfull Cross-Sectional Area:	8.7
Bankfull Width:	8.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Low Bank Height:	2.0
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 5, XS -6, Riffle
Feature	Riffle
Date:	10/20/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	531.5
3.7	531.2
6.8	531.0
8.4	530.7
9.8	530.3
10.7	530.1
11.4	530.0
12.1	529.9
12.7	529.8
13.5	529.7
15.0	530.0
16.6	530.4
17.9	530.8
19.5	530.9
23.0	531.0
25.3	531.3

SUMMARY DATA	
Bankfull Elevation:	531.1
Bankfull Cross-Sectional Area:	10.4
Bankfull Width:	18.3
Flood Prone Area Elevation:	532.5
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	32.2
Entrenchment Ratio:	5.5
Bank Height Ratio:	0.9

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS - 1, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.4	21.3
1.9	21.3
3.1	20.9
4.0	20.5
4.9	19.7
5.6	19.7
6.4	20.0
7.0	20.1
7.8	20.3
8.3	20.5
8.9	20.6
9.9	20.8
10.9	21.1
12.0	21.5
13.2	21.6
15.6	21.8
17.8	22.0
L	
L	
L	L

SUMMARY DATA	
Bankfull Elevation:	21.3
Bankfull Cross-Sectional Area:	8.3
Bankfull Width:	11.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS -2, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	21.9
4.6	21.7
6.8	21.4
7.9	21.1
8.9	21.0
10.0	20.8
11.1	20.7
12.4	20.7
13.3	20.8
14.5	21.0
15.1	21.2
16.2	21.6
17.3	21.8
19.5	21.8
21.9	22.1

SUMMARY DATA	
Bankfull Elevation:	21.6
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	10.6
Flood Prone Area Elevation:	22.4
Flood Prone Width:	100.0
Max Depth at Bankfull:	0.9
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	19.9
Entrenchment Ratio:	9.4
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS - 3, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	24.1
3.4	23.6
5.2	23.5
6.8	23.5
8.1	23.1
9.0	22.6
9.7	22.5
10.9	22.4
11.7	22.4
12.8	22.4
14.0	22.6
14.9	23.0
16.0	23.6
17.3	23.9
18.8	24.1
22.8	24.6
	╞────┨
	<u> </u>]
	┼───┨

SUMMARY DATA	
Bankfull Elevation:	23.7
Bankfull Cross-Sectional Area:	9.8
Bankfull Width:	11.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.7
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS -4, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	24.3
3.1	23.8
6.3	23.7
6.9	23.5
7.5	23.0
8.1	22.9
9.2	22.7
10.2	22.7
11.5	22.7
13.2	22.9
14.2	23.0
15.0	23.4
16.1	23.7
17.3	23.9
19.4	24.1
21.3	24.3

SUMMARY DATA	
Bankfull Elevation:	23.8
Bankfull Cross-Sectional Area:	8.0
Bankfull Width:	13.6
Flood Prone Area Elevation:	24.9
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	23.0
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS -5, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	26.4
3.5	26.4
6.5	26.3
6.5 7.7	25.5
8.9	25.1
10.2	25.1
11.6	25.1
12.1	25.4
13.3	25.6
14.2	25.8
15.6	26.2
17.9	26.4
21.1	26.6

SUMMARY DATA	
Bankfull Elevation:	26.4
Bankfull Cross-Sectional Area:	8.1
Bankfull Width:	12.7
Flood Prone Area Elevation:	27.7
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	19.8
Entrenchment Ratio:	7.9
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS - 6, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	26.9
4.4	26.9
6.3	26.4
7.8	26.0
8.3	25.5
9.5	25.2
10.5	25.1
11.3	25.1
12.4	25.3
13.4	25.7
14.4	25.9
15.6	26.2
17.0	26.3
20.6	26.5
23.5	26.7

SUMMARY DATA	
Bankfull Elevation:	26.4
Bankfull Cross-Sectional Area:	8.4
Bankfull Width:	13.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.9

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS - 7, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation	
0.0	28.0	
5.8	28.0	
8.1	27.8	
9.9	27.0	
11.8	26.2	
12.5	25.6	
13.3	25.5	
14.4	25.5	
15.3	25.4	
16.0	26.0	
17.3	26.1	
18.4	26.6	
20.8	26.9	
24.2	27.3	
27.8	27.3	
	1	

SUMMARY DATA	
Bankfull Elevation:	27.2
Bankfull Cross-Sectional Area:	11.1
Bankfull Width:	13.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.9

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 6, XS -8, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	27.4
4.9	27.1
9.8	26.8
11.8	26.6
12.8	26.1
14.4	26.0
15.8	26.0
16.9	26.2
17.9	26.5
18.8	26.8
19.9	27.1
21.5	27.3
25.4	27.2
29.2	27.3

SUMMARY DATA	
Bankfull Elevation:	27.0
Bankfull Cross-Sectional Area:	6.3
Bankfull Width:	13.2
Flood Prone Area Elevation:	28.0
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.0
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.5
W / D Ratio:	27.9
Entrenchment Ratio:	7.6
Bank Height Ratio:	1.1

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS -1, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	25.6
4.4	25.7
6.3	25.6
7.5	25.1
8.4	24.5
9.4	24.6
10.9	24.4
11.9	24.4
12.7	24.5
13.8	24.6
14.8	24.6
15.9	24.8
17.5	25.4
19.2	25.7
21.1	26.0
25.1	26.0

SUMMARY DATA	
Bankfull Elevation:	25.7
Bankfull Cross-Sectional Area:	10.7
Bankfull Width:	15.1
Flood Prone Area Elevation:	27.0
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	21.4
Entrenchment Ratio:	6.6
Bank Height Ratio:	1.0

Stream Type Eb 4

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS - 2, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
1.0	25.4
4.9	25.6
6.0	25.4
7.2	24.8
8.6	24.2
10.0	23.7
11.2	23.4
12.3	23.4
13.6	23.5
14.6	23.5
15.6	24.2
16.3	24.7
17.7	25.3
18.8	25.4
20.6	25.8
21.7	26.0
25.2	26.1

SUMMARY DATA	
Bankfull Elevation:	25.6
Bankfull Cross-Sectional Area:	18.2
Bankfull Width:	18.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.1
Low Bank Height:	2.1
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Eb 4

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS -3, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	25.7
3.8	25.5
4.6	25.2
5.5	24.7
6.7	24.6
7.6	24.4
8.3	24.6
9.5	24.5
10.5	24.4
11.7	24.7
12.8	24.9
14.6	25.2
16.4	25.6
17.5	25.9
21.8	26.1

SUMMARY DATA	
Bankfull Elevation:	25.6
Bankfull Cross-Sectional Area:	9.9
Bankfull Width:	14.7
Flood Prone Area Elevation:	26.8
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	21.8
Entrenchment Ratio:	6.8
Bank Height Ratio:	1.0

Stream Type Eb 4

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS - 4, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.5	25.7
3.9	25.7
6.4	25.2
7.6	24.7
8.2	24.5
8.8	24.0
9.8	23.8
10.9	23.8
12.8	23.6
14.0	23.7
15.0	24.7
16.2	25.1
17.7	25.5
19.7	25.9
21.2	25.9
23.3	26.2

SUMMARY DATA	
Bankfull Elevation:	25.5
Bankfull Cross-Sectional Area:	13.0
Bankfull Width:	12.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.8
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type Eb 4

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS -5, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	30.9
3.5	30.6
6.2	29.9
7.2	29.6
8.1	29.5
8.7	29.3
9.6	29.1
10.6	29.1
11.7	29.1
12.5	29.3
13.6	29.5
14.5	29.8
15.9	30.0
18.3	30.3
21.2	30.5
23.2	30.6

SUMMARY DATA	
Bankfull Elevation:	30.2
Bankfull Cross-Sectional Area:	7.2
Bankfull Width:	12.2
Flood Prone Area Elevation:	31.2
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	20.5
Entrenchment Ratio:	8.2
Bank Height Ratio:	1.1

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS - 6, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.4	31.4
2.5	31.3
4.2	30.7
5.6	30.4
6.9	30.0
7.7	29.2
7.9	29.2
8.8	29.1
9.6	29.1
10.5	29.2
11.2	29.3
11.7	29.8
12.2	30.4
13.7	30.9
15.3	31.2
17.8	31.4

SUMMARY DATA	
Bankfull Elevation:	30.9
Bankfull Cross-Sectional Area:	10.7
Bankfull Width:	10.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Low Bank Height:	1.8
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.9

Stream Type Eb 4

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS - 7, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	37.7
3.5 5.1	37.4
5.1	37.3
6.0	37.1
7.0	36.6
7.9	36.1
8.8	35.7
10.0	35.7
10.8	35.7
11.6	35.6
12.1	35.7
12.9	36.1
13.5	36.7
14.4	37.4
15.2	37.7
18.0	37.8
19.9	37.9

SUMMARY DATA	
Bankfull Elevation:	37.5
Bankfull Cross-Sectional Area:	11.6
Bankfull Width:	11.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Low Bank Height:	1.8
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	0.9

Stream Type Eb 4

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 7, XS -8, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	39.3
2.9	38.8
4.6	38.4
5.9	38.2
7.1	38.1
8.0	37.8
8.5	37.8
9.9	37.6
10.8	37.9
11.9	38.0
12.4	38.3
13.7	38.6
14.9	38.8
16.5	38.8
18.0	38.8

SUMMARY DATA	
Bankfull Elevation:	38.6
Bankfull Cross-Sectional Area:	5.2
Bankfull Width:	10.1
Flood Prone Area Elevation:	39.6
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.0
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.5
W / D Ratio:	19.6
Entrenchment Ratio:	9.9
Bank Height Ratio:	1.2

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 8, XS -1, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.7	515.4
4.5	514.8
7.6	514.3
8.8	514.0
9.3	514.0
9.8	513.8
11.0	513.7
12.8	513.6
13.8	514.1
14.8	514.3
16.2	514.7
19.1	515.2
22.1	515.7
24.4	515.9

SUMMARY DATA	
Bankfull Elevation:	515.0
Bankfull Cross-Sectional Area:	10.2
Bankfull Width:	15.2
Flood Prone Area Elevation:	516.3
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.3
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.7
W / D Ratio:	22.7
Entrenchment Ratio:	6.6
Bank Height Ratio:	1.2

Q!4 -	\mathbf{W}_{l}
Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 8, XS - 2, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.3	515.5
5.9	515.0
7.6	514.8
9.0	514.2
9.8	514.0
10.6	513.6
11.1	513.4
11.9	513.2
12.9	513.1
14.2	513.2
15.2	513.4
15.9	513.6
16.7	514.1
18.1	514.7
19.4	515.1
21.9	515.4
24.3	515.6
26.3	515.9

SUMMARY DATA	
Bankfull Elevation:	515.0
Bankfull Cross-Sectional Area:	13.9
Bankfull Width:	13.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 8, XS - 3, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	517.3
3.5	516.8
5.1	516.8
6.2	516.4
7.0	516.0
7.5	515.9
8.3	515.6
9.4	515.6
10.5	515.5
11.3	515.9
12.1	516.1
13.2	516.4
15.4	516.8
17.5	517.0
21.1	517.5

SUMMARY DATA	
Bankfull Elevation:	516.9
Bankfull Cross-Sectional Area:	8.3
Bankfull Width:	12.9
Flood Prone Area Elevation:	518.3
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.6
W / D Ratio:	20.1
Entrenchment Ratio:	7.8
Bank Height Ratio:	1.1

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 8, XS - 4, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	517.5
2.8	517.0
5.0	517.1
6.3	516.7
7.6	516.4
8.6	516.1
9.2	515.9
10.3	515.4
10.8	515.3
11.5	515.3
12.2	515.4
13.0	515.7
13.5	516.2
14.9	516.7
15.9	516.9
17.9	517.1
20.9	517.6

SUMMARY DATA	
Bankfull Elevation:	517.0
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	11.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 8, XS -5, Riffle
Feature	Riffle
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	519.1
3.4	518.9
5.3	518.8
6.8	518.3
6.9	518.3
8.1	518.1
8.8	517.7
10.0	517.5
10.8	517.6
11.6	517.8
12.8	518.0
13.7	518.3
16.4	518.8
19.3	519.0
21.1	519.1

SUMMARY DATA	
Bankfull Elevation:	518.7
Bankfull Cross-Sectional Area:	6.4
Bankfull Width:	10.3
Flood Prone Area Elevation:	519.9
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	16.6
Entrenchment Ratio:	9.7
Bank Height Ratio:	1.1

Site	Warren Wilson
Watershed:	French Broad, 06010105
XS ID	UT 8, XS - 6, Pool
Feature	Pool
Date:	10/21/2020
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	519.4
4.2	519.0
6.3	518.6
7.8	518.1
8.7	517.8
9.4	517.9
10.3	517.4
11.4	517.2
12.3	517.0
13.3	517.1
14.1	517.0
14.8	517.6
15.7	518.0
16.7	518.4
19.2	518.8
22.4	519.0
25.3	519.4

SUMMARY DATA	
Bankfull Elevation:	518.9
Bankfull Cross-Sectional Area:	13.1
Bankfull Width:	14.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.8
Low Bank Height:	1.8
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Appendix E HYDROLOGY DATA

Tables 15A-C Channel Evidence Stream Gauge Graphs Table 16. Verification of Bankfull Events Table 17A-B. Groundwater Hydrology Data Groundwater Gauge Graphs Bud Burst Documentation Photographs Figure E-1. Year 1 (2020) Soil Temperature Data

Table 15A. UT3 Channel Evidence

UT3 Channel Evidence		Year 2 (2021)	Year 3 (2022)	Year 4 (2023)	Year 5 (2024)	Year 6 (2025)	Year 7 (2026)
Max consecutive days channel flow	159						
Presence of litter and debris (wracking)	Yes						
Leaf litter disturbed or washed away	Yes						
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes						
Sediment deposition and/or scour indicating sediment transport	Yes						
Water staining due to continual presence of water							
Formation of channel bed and banks	Yes						
Sediment sorting within the primary path of flow	Yes						
Sediment shelving or a natural line impressed on the banks	Yes						
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes						
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes						
Exposure of woody plant roots within the primary path of flow	No						
Other:							

Table 15B. UT6 Channel Evidence

UT6 Channel Evidence		Year 2 (2021)	Year 3 (2022)	Year 4 (2023)	Year 5 (2024)	Year 6 (2025)	Year 7 (2026)
Max consecutive days channel flow	33*						
Presence of litter and debris (wracking)	Yes						
Leaf litter disturbed or washed away	Yes						
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes						
Sediment deposition and/or scour indicating sediment transport	Yes						
Water staining due to continual presence of water	Yes						
Formation of channel bed and banks	Yes						
Sediment sorting within the primary path of flow	Yes						
Sediment shelving or a natural line impressed on the banks	Yes						
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes						
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes						
Exposure of woody plant roots within the primary path of flow	No						
Other:							

*The gauge was installed August 1, 2020. Based on precipitation data, adjacent groundwater gauge data (Gauge 9), and other Site stream gauge data, it is expected to have flowed consecutively for much of the year 1 (2020) monitoring period.

Table 15C. UT8 Channel Evidence

UT8 Channel Evidence		Year 2 (2021)	Year 3 (2022)	Year 4 (2023)	Year 5 (2024)	Year 6 (2025)	Year 7 (2026)
Max consecutive days channel flow	241						
Presence of litter and debris (wracking)	Yes						
Leaf litter disturbed or washed away	Yes						
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes						
Sediment deposition and/or scour indicating sediment transport	Yes						
Water staining due to continual presence of water	Yes						
Formation of channel bed and banks	Yes						
Sediment sorting within the primary path of flow	Yes						
Sediment shelving or a natural line impressed on the banks	Yes						
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes						
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes						
Exposure of woody plant roots within the primary path of flow	No						
Other:							

Table 16. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 20, 2020	May 20, 2020	Stream gauges and trail cameras captured a bankfull event at UT8 after 4.47 inches of rain was documented between May 19 and 20, 2020 at a nearby weather station.	1
November 4, 2020	October 27, 2020	Wrack and laid-back vegetation were observed outside the TOB of UT3 after 4.7 inches of rain was documented between October 27 and 28, 2020 at a nearby weather station.	2

G	Typical Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)									
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)			
3	Yes 127 days (55.0%)									
4	Yes 32 days (13.9%)									
5	Yes 174 days (75.3%)									
6	Yes 93 days (40.3%)									
7	Yes 72 days (31.2%)									
8	Yes 231 days (100%)									

Table 17A. Groundwater Hydrology Data: Mitigation Success (UT-3B, Little Berea/ Clingman's)

Table 17B. Groundwater Hydrology Data: Potential Wetland Loss Monitoring Areas

C	Typical Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)								
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)		
1	Yes 37 days (16.0%)								
2	Yes 61 days (26.4%)								
9	Yes 175 days (75.8%)								
10	No* 9 days (3.9%)								

*Gauge was not installed until August 1, 2020. It is expected to have exceeded typical wetland success criteria had it been installed earlier in the growing season.

Warren Wilson College MY-01 (2020) Bud Burst Documentation Photographs Taken March 16-18, 2020

Figure E-1. Year 1 (2020) Soil Temperature Data

Appendix F Preconstruction Wetland Hydrology Data

Figure 3. Preconstruction Gauge Locations Table 18. Preconstruction Groundwater Gauge Data Summary

Prepared for:

Project:

WARREN WILSON COLLEGE STREAM MITIGATION SITE

Buncombe County, NC

Title:

PRE-CONSTRUCTION GAUGE LOCATIONS

Drawn by:

KRJ

Date:

Jul 2020

1:2000

Project No.:

20-004

FIGURE

3

Gauge	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)	
	2018 Data	2019 Data
1A	No/21 days (9.8 percent)	Yes/57 days (27 percent)
1B	No/9 days (4.2 percent)	Yes/50 days (23 percent)
1C	No/3 days (1.4 percent)	No/3 days (1.4 percent)
2A	NA*	Yes/48 days (22 percent)
2B	No/20 days (9.3 percent)	No/0 days (0 percent)
2C	No/12 days (5.6 percent)	Yes/50 days (23 percent)
3A	No/24 days (11.2 percent)	Yes/124 days (58 percent)
3B	Yes/117 days (54.7 percent)	Yes/140 days (65 percent)
3C	No/4 days (1.9 percent)	No/3 days (1.4 percent)

 Table 18. Preconstruction Groundwater Gauge Data Summary

*Gauge 2A was damaged during 2018 and data was not recoverable. It was replaced in 2019.

Appendix G Responses to MY0 IRT Comments